Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling

Different cell-death mechanisms control many physiological and pathological processes in humans. Mitochondria play important roles in cell death through the release of pro-apoptotic factors such as cytochrome c and apoptosis-inducing factor (AIF), which activate caspase-dependent and caspase-indepen...

Full description

Saved in:
Bibliographic Details
Published inTrends in pharmacological sciences (Regular ed.) Vol. 25; no. 5; pp. 259 - 264
Main Authors Hong, Suk Jin, Dawson, Ted M., Dawson, Valina L.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Different cell-death mechanisms control many physiological and pathological processes in humans. Mitochondria play important roles in cell death through the release of pro-apoptotic factors such as cytochrome c and apoptosis-inducing factor (AIF), which activate caspase-dependent and caspase-independent cell death, respectively. Poly(ADP-ribose) polymerase 1 (PARP-1) is emerging as an important activator of caspase-independent cell death. PARP-1 generates the majority of long, branched poly(ADP-ribose) (PAR) polymers following DNA damage. Overactivation of PARP-1 initiates a nuclear signal that propagates to mitochondria and triggers the release of AIF. AIF then shuttles from mitochondria to the nucleus and induces peripheral chromatin condensation, large-scale fragmentation of DNA and, ultimately, cytotoxicity. Identification of the pro-death and pro-survival signals in the PARP-1-mediated cell-death program might provide novel therapeutic targets in human diseases.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0165-6147
1873-3735
DOI:10.1016/j.tips.2004.03.005