Process Mining Dashboard in Operating Rooms: Analysis of Staff Expectations with Analytic Hierarchy Process
The widespread adoption of real-time location systems is boosting the development of software applications to track persons and assets in hospitals. Among the vast amount of applications, real-time location systems in operating rooms have the advantage of grounding advanced data analysis techniques...
Saved in:
Published in | International journal of environmental research and public health Vol. 16; no. 2; p. 199 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
11.01.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The widespread adoption of real-time location systems is boosting the development of software applications to track persons and assets in hospitals. Among the vast amount of applications, real-time location systems in operating rooms have the advantage of grounding advanced data analysis techniques to improve surgical processes, such as process mining. However, such applications still find entrance barriers in the clinical context. In this paper, we aim to evaluate the preferred features of a process mining-based dashboard deployed in the operating rooms of a hospital equipped with a real-time location system. The dashboard allows to discover and enhance flows of patients based on the location data of patients undergoing an intervention. Analytic hierarchy process was applied to quantify the prioritization of the dashboard features (filtering data, enhancement, node selection, statistics, etc.), distinguishing the priorities that each of the different roles in the operating room service assigned to each feature. The staff in the operating rooms (
= 10) was classified into three groups: Technical, clinical, and managerial staff according to their responsibilities. Results showed different weights for the features in the process mining dashboard for each group, suggesting that a flexible process mining dashboard is needed to boost its potential in the management of clinical interventions in operating rooms. This paper is an extension of a communication presented in the Process-Oriented Data Science for Health Workshop in the Business Process Management Conference 2018. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1660-4601 1661-7827 1660-4601 |
DOI: | 10.3390/ijerph16020199 |