A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization

A considerable number of constrained optimization evolutionary algorithms (COEAs) have been proposed due to increasing interest in solving constrained optimization problems (COPs) by evolutionary algorithms (EAs). In this paper, we first review existing COEAs. Then, a novel EA for constrained optimi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 10; no. 6; pp. 658 - 675
Main Authors Cai, Zixing, Wang, Yong
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A considerable number of constrained optimization evolutionary algorithms (COEAs) have been proposed due to increasing interest in solving constrained optimization problems (COPs) by evolutionary algorithms (EAs). In this paper, we first review existing COEAs. Then, a novel EA for constrained optimization is presented. In the process of population evolution, our algorithm is based on multiobjective optimization techniques, i.e., an individual in the parent population may be replaced if it is dominated by a nondominated individual in the offspring population. In addition, three models of a population-based algorithm-generator and an infeasible solution archiving and replacement mechanism are introduced. Furthermore, the simplex crossover is used as a recombination operator to enrich the exploration and exploitation abilities of the approach proposed. The new approach is tested on 13 well-known benchmark functions, and the empirical evidence suggests that it is robust, efficient, and generic when handling linear/nonlinear equality/inequality constraints. Compared with some other state-of-the-art algorithms, our algorithm remarkably outperforms them in terms of the best, mean, and worst objective function values and the standard deviations. It is noteworthy that our algorithm does not require the transformation of equality constraints into inequality constraints
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2006.872344