Unusual radial breathing mode signals in cm-scale carbon nanotube buckypapers filled with Fe3C single crystals: Investigating the role of chlorine

Fe3C filled carbon nanotubes (CNTs) self-organized into flexible-film-morphologies (buckypapers) have been proposed for numerous applications, these include flexible data-storage-devices, exchange-bias, spin-based-systems, flexible ferromagnetic-electrodes and others. However, despite the important...

Full description

Saved in:
Bibliographic Details
Published inCarbon trends Vol. 8; p. 100179
Main Authors Song, Jiaxin, Wang, Shanling, He, Yi, Dai, Yixin, Li, Wenkang, Wu, Hansong, He, Wenjing, Gu, Aiqun, Guo, Jian, Wen, Jiqiu, Boi, Filippo S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fe3C filled carbon nanotubes (CNTs) self-organized into flexible-film-morphologies (buckypapers) have been proposed for numerous applications, these include flexible data-storage-devices, exchange-bias, spin-based-systems, flexible ferromagnetic-electrodes and others. However, despite the important progress, the significant concentration of Cl-containing-hydrocarbons which is needed for the buckypaper-growth (i.e. 1 to 10 ml) represents still an important challenge for industrial-production. Here we report the experimental-growth-parameters needed for the nucleation and growth of flexible Fe3C-filled-CNT buckypapers, under very-low-concentrations of dichlorobenzene, as low as 0.05 ml. By carefully estimating both the heating- and cooling-rate parameters of the chosen chemical-vapor-deposition (CVD) reactor, we demonstrate the identification of two active-growth-regions which allow for the simultaneous nucleation and growth of ferromagnetically-filled buckypapers. The obtained films comprise of selectively grown single-wall (active-region-1) and multiwall (active-region-2) CNTs. The simultaneous growth of the two types of buckypapers within the same reactor is discussed and attributed to the dynamics of dichlorobenzene-pyrolysis, which appears to yield a higher concentration of Cl-radicals in the active-region-1. In the buckypapers grown in the latter (active-region-1) we highlight an unusual separation between the first (inner) and second CNT-cylinders, with the HRTEM analyses revealing an anomalously-large interlayer-distance varying from ∼ 1.6 to ∼ 6.6 nm (an effective void between two CNT-cylinders). [Display omitted]
ISSN:2667-0569
2667-0569
DOI:10.1016/j.cartre.2022.100179