Bond dissociation energies of lanthanide sulfides and selenides

Resonant two-photon ionization spectroscopy has been employed to observe sharp predissociation thresholds in the spectra of the lanthanide sulfides and selenides for the 4f metals Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Lu. As these molecules possess a large density of electronic states near the gro...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 154; no. 12; p. 124307
Main Authors Sorensen, Jason J, Tieu, Erick, Morse, Michael D
Format Journal Article
LanguageEnglish
Published United States 28.03.2021
Online AccessGet more information

Cover

Loading…
More Information
Summary:Resonant two-photon ionization spectroscopy has been employed to observe sharp predissociation thresholds in the spectra of the lanthanide sulfides and selenides for the 4f metals Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Lu. As these molecules possess a large density of electronic states near the ground separated atom limit, these predissociation thresholds are argued to coincide with the true 0 K bond dissociation energies (BDEs). This is because spin-orbit and nonadiabatic couplings among these states allow the molecules to predissociate rapidly when the BDE is reached or exceeded. The measured BDEs, in eV, are as follows: 5.230(3) (PrS), 4.820(3) (NdS), 4.011(17) (SmS), 3.811(8) (EuS), 5.282(5) (GdS), 5.292(3) (TbS), 4.298(3) (DyS), 4.251(3) (HoS), 4.262(3) (ErS), 5.189(3) (LuS), 4.496(3) (PrSe), 4.099(3) (NdSe), 3.495(17) (SmSe), 3.319(3) (EuSe), 4.606(3) (GdSe), 4.600(6) (TbSe), 3.602(3) (DySe), 3.562(3) (HoSe), 3.587(3) (ErSe), and 4.599(6) (LuSe). Through the use of thermochemical cycles, the 0 K gaseous heat of formation, Δ H , is reported for each molecule. A threshold corresponding to the onset of two-photon ionization in EuSe was also observed, providing the ionization energy of EuSe as 6.483(10) eV. Through a thermochemical cycle and the above reported BDE of the neutral EuSe molecule, the BDE for the Eu -Se cation was also determined as D (Eu -Se) = 2.506(10) eV. Bonding trends of the lanthanide sulfides and selenides are discussed. Our previous observation that the transition metal sulfides are 15.6% more strongly bound than the corresponding selenides continues to hold true for the lanthanides as well.
ISSN:1089-7690
DOI:10.1063/5.0042695