Whole-tree harvesting improves the ecosystem N, P and K cycling functions in secondary forests in the Qinling Mountains, China

Forest ecosystem nutrient cycling functions are the basis for the survival and development of organisms, and play an important role in maintaining the forest structural and functional stability. However, the response of forest nutrient cycling functions at the ecosystem level to whole-tree harvestin...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 15; p. 1394112
Main Authors Pang, Yue, Tian, Jing, Liu, Qiang, Wang, Dexiang
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 20.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Forest ecosystem nutrient cycling functions are the basis for the survival and development of organisms, and play an important role in maintaining the forest structural and functional stability. However, the response of forest nutrient cycling functions at the ecosystem level to whole-tree harvesting remains unclear. Herein, we calculated the ecosystem nitrogen (N), phosphorus (P), and potassium (K) absorption, utilization, retention, cycle, surplus, accumulation, productivity, turnover and return parameters and constructed N, P, and K cycling function indexes to identify the changes in ecosystem N, P, and K cycling functions in a secondary forest in the Qinling Mountains after 5 years of five different thinning intensities (0% (CK), 15%, 30%, 45%, and 60%). We showed that the ecosystem’s N, P, and K cycling parameters varied significantly and responded differently to thinning treatments. As the thinning intensity increased, the N, P, and K cycling function indexes increased by 5%~232%, 32%~195%, and 104%~233% compared with CK. Whole-tree harvesting promoted ecosystem N and P cycling functions through two pathways: (a) directly regulated litter biomass, indirectly affected soil nutrient characteristics, and then regulated ecosystem N and P cycling functions; (b) directly regulated plant productivity, indirectly affected plant and soil nutrient characteristics, and then regulated ecosystem N and P cycling functions. In contrast, whole-tree harvesting mainly indirectly affected the plant and soil nutrient characteristics by directly adjusting the plant productivity, and promoting the ecosystem K cycling function. Furthermore, N and P cycling functions were mainly regulated by understory plant productivity while tree and herb nutrient characteristics were key driving factors for K cycling functions. These findings indicated that whole-tree harvesting significantly improved the ecosystem N, P and K cycling functions, and reveals varied regulatory mechanisms, which may aid in formulating effective measures for sustainable forest ecosystem nutrient management.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Zunchi Liu, Beijing Normal University, China
Dang Peng, Central South University Forestry and Technology, China
Reviewed by: Chaofan Zhou, Chinese Academy of Forestry, China
Edited by: Sebastian Leuzinger, Auckland University of Technology, New Zealand
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2024.1394112