Influence of Inertia on the Dynamic Compressive Strength of Concrete

The rate sensitivity of concrete material is closely related to the inertia and viscous effects. However, the effect of inertia on the dynamic strength of concrete remains unclear. In this paper, digital image correlation technology was applied to study the strain variation of dry and saturated conc...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 20; p. 7278
Main Authors Qin, Zhangchen, Zheng, Dan, Li, Xinxin, Wang, Haicui
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 18.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The rate sensitivity of concrete material is closely related to the inertia and viscous effects. However, the effect of inertia on the dynamic strength of concrete remains unclear. In this paper, digital image correlation technology was applied to study the strain variation of dry and saturated concrete with different loading rates. The test results indicated that the strain gradually decreased with the distance from the load end, and the strain gradient around the load region increased with the strain rate, especially for saturated concrete. Then, a single degree of freedom model was established to evaluate the dynamic compressive strength of elastic concrete. The calculated results indicated that the influence of inertia on the dynamic increase factor (DIF) was negligible for concrete within a low strain rate. When the strain rate is larger than 100/s, the inertial effect on the strength of concrete should be considered. After that, a quasi-static concrete damaged plasticity (CDP) model was employed to simulate the influence of inertia on the stress distribution and axial reaction force at the loaded end of concrete under different rates of compressive loading and verified with experimental results. The results obtained in this study indicated that the dynamic nominal strength of concrete obtained from the tests could not be directly used for structural analysis which may overestimate the effect of inertia on the dynamic response of the structure.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15207278