Structure of a Ca2+-Myristoyl Switch Protein That Controls Activation of a Phosphatidylinositol 4-Kinase in Fission Yeast

Neuronal calcium sensor (NCS) proteins transduce Ca2+ signals and are highly conserved from yeast to humans. We determined NMR structures of the NCS-1 homolog from fission yeast (Ncs1), which activates a phosphatidylinositol 4-kinase. Ncs1 contains an α-NH2-linked myristoyl group on a long N-termina...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 286; no. 14; pp. 12565 - 12577
Main Authors Lim, Sunghyuk, Strahl, Thomas, Thorner, Jeremy, Ames, James B.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.04.2011
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Neuronal calcium sensor (NCS) proteins transduce Ca2+ signals and are highly conserved from yeast to humans. We determined NMR structures of the NCS-1 homolog from fission yeast (Ncs1), which activates a phosphatidylinositol 4-kinase. Ncs1 contains an α-NH2-linked myristoyl group on a long N-terminal arm and four EF-hand motifs, three of which bind Ca2+, assembled into a compact structure. In Ca2+-free Ncs1, the N-terminal arm positions the fatty acyl chain inside a cavity near the C terminus. The C14 end of the myristate is surrounded by residues in the protein core, whereas its amide-linked (C1) end is flanked by residues at the protein surface. In Ca2+-bound Ncs1, the myristoyl group is extruded (Ca2+-myristoyl switch), exposing a prominent patch of hydrophobic residues that specifically contact phosphatidylinositol 4-kinase. The location of the buried myristate and structure of Ca2+-free Ncs1 are quite different from those in other NCS proteins. Thus, a unique remodeling of each NCS protein by its myristoyl group, and Ca2+-dependent unmasking of different residues, may explain how each family member recognizes distinct target proteins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110.208868