Propagation Parameter Estimation, Modeling and Measurements for Ultrawideband MIMO Radar

Ultrawideband (UWB) radar is a promising method for reliable remote monitoring of vital signs. The use of multiple antennas at transmitter and receiver (MIMO) allows not only improved reliability, but also better accuracy in localization and tracking of humans and their various types of movement. Th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 59; no. 11; pp. 4257 - 4267
Main Authors Salmi, J., Molisch, A. F.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ultrawideband (UWB) radar is a promising method for reliable remote monitoring of vital signs. The use of multiple antennas at transmitter and receiver (MIMO) allows not only improved reliability, but also better accuracy in localization and tracking of humans and their various types of movement. This paper describes an experimental demonstration of localizing a test subject and tracking his breathing under ideal conditions. The UWB MIMO channel, which includes the test subject as well as other objects, is modeled as a superposition of multipath components (MPCs). From the measured data one can extract the parameters of the MPCs, including their directions and delays, which allows localization of the test subject as well as tracking the breathing motion. Since the breathing pattern of the test subject induces delay variations of the diaphragm-reflected MPC that are much smaller than the Fourier resolution limits, the high-resolution RIMAX algorithm (iterative maximum-likelihood estimation scheme) is employed together with a path detection scheme for determining and tracking the MPC parameters. Furthermore, it is illustrated that with a wideband array model, the requirements for antenna spacing are not as limited as for conventional narrowband array processing. Through controlled experiments with a vector network analyzer and a virtual antenna array observing both an artificial "breathing" object as well as a human subject, it is shown that one can accurately estimate the small scale movement from human respiratory activity. This is achieved both for line-of-sight between transmitter, receiver, and objects, as well as for non-line-of sight.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2011.2164214