Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit
In the paper we share our operational experience gained from three sites: Sleipner (14 years of injection), In Salah (6 years) and Snøhvit (2 years). Together, these three sites have disposed 16 Mt of CO2 by 2010. In highly variable reservoirs, with permeability ranging from a few milliDarcy to more...
Saved in:
Published in | Energy procedia Vol. 4; pp. 5541 - 5548 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the paper we share our operational experience gained from three sites: Sleipner (14 years of injection), In Salah (6 years) and Snøhvit (2 years). Together, these three sites have disposed 16 Mt of CO2 by 2010.
In highly variable reservoirs, with permeability ranging from a few milliDarcy to more than one Darcy, single wells have injected several hundred Kt of CO2 per year. In the reservoirs, the actual CO2 plume development has been strongly controlled by geological factors that we learned about during injection. Geophysical monitoring methods (especially seismic, gravity, and satellite data) have, at each site, revealed some of these unpredicted geological factors. Thus monitoring methods are as valuable for reservoir characterisation as they are for monitoring fluid saturation and pressure changes.
Current scientific debates that address CO2 storage capacity mainly focus on the utilization of the pore space (efficiency) and the rate of pressure dissipation in response to injection (pressure limits). We add to this that detailed CO2 site characterisation and monitoring is needed to prove significant practical CO2 storage capacity–on a case by case basis. As this specific site experience and knowledge develops more general conclusions on storage capacity, injectivity and efficiency may be possible. |
---|---|
ISSN: | 1876-6102 1876-6102 |
DOI: | 10.1016/j.egypro.2011.02.541 |