An IRP-like protein from Plasmodium falciparum binds to a mammalian iron-responsive element

This study cloned and sequenced the complementary DNA (cDNA) encoding of a putative malarial iron responsive element-binding protein (PfIRPa) and confirmed its identity to the previously identified iron-regulatory protein (IRP)–like cDNA from Plasmodium falciparum. Sequence alignment showed that the...

Full description

Saved in:
Bibliographic Details
Published inBlood Vol. 98; no. 8; pp. 2555 - 2562
Main Authors Loyevsky, Mark, LaVaute, Timothy, Allerson, Charles R., Stearman, Robert, Kassim, Olakunle O., Cooperman, Sharon, Gordeuk, Victor R., Rouault, Tracey A.
Format Journal Article
LanguageEnglish
Published Washington, DC Elsevier Inc 15.10.2001
The Americain Society of Hematology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study cloned and sequenced the complementary DNA (cDNA) encoding of a putative malarial iron responsive element-binding protein (PfIRPa) and confirmed its identity to the previously identified iron-regulatory protein (IRP)–like cDNA from Plasmodium falciparum. Sequence alignment showed that the plasmodial sequence has 47% identity with human IRP1. Hemoglobin-free lysates obtained from erythrocyte-stage P falciparum contain a protein that binds a consensus mammalian iron-responsive element (IRE), indicating that a protein(s) with iron-regulatory activity was present in the lysates. IRE-binding activity was found to be iron regulated in the electrophoretic mobility shift assays. Western blot analysis showed a 2-fold increase in the level of PfIRPa in the desferrioxamine-treated cultures versus control or iron-supplemented cells. Malarial IRP was detected by anti-PfIRPa antibody in the IRE-protein complex fromP falciparum lysates. Immunofluorescence studies confirmed the presence of PfIRPa in the infected red blood cells. These findings demonstrate that erythrocyte P falciparum contains an iron-regulated IRP that binds a mammalian consensus IRE sequence, raising the possibility that the malaria parasite expresses transcripts that contain IREs and are iron-dependently regulated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V98.8.2555