Time-dependent covariates in the proportional subdistribution hazards model for competing risks

Separate Cox analyses of all cause-specific hazards are the standard technique of choice to study the effect of a covariate in competing risks, but a synopsis of these results in terms of cumulative event probabilities is challenging. This difficulty has led to the development of the proportional su...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 9; no. 4; pp. 765 - 776
Main Authors Beyersmann, Jan, Schumacher, Martin
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.10.2008
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Separate Cox analyses of all cause-specific hazards are the standard technique of choice to study the effect of a covariate in competing risks, but a synopsis of these results in terms of cumulative event probabilities is challenging. This difficulty has led to the development of the proportional subdistribution hazards model. If the covariate is known at baseline, the model allows for a summarizing assessment in terms of the cumulative incidence function. black Mathematically, the model also allows for including random time-dependent covariates, but practical implementation has remained unclear due to a certain risk set peculiarity. We use the intimate relationship of discrete covariates and multistate models to naturally treat time-dependent covariates within the subdistribution hazards framework. The methodology then straightforwardly translates to real-valued time-dependent covariates. As with classical survival analysis, including time-dependent covariates does not result in a model for probability functions anymore. Nevertheless, the proposed methodology provides a useful synthesis of separate cause-specific hazards analyses. We illustrate this with hospital infection data, where time-dependent covariates and competing risks are essential to the subject research question.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1465-4644
1468-4357
1468-4357
DOI:10.1093/biostatistics/kxn009