Linear vs Nonlinear MPC for Trajectory Tracking Applied to Rotary Wing Micro Aerial Vehicles
Precise trajectory tracking is a crucial property for Micro Air Vehicles (MAVs) to operate in cluttered environment or under disturbances. In this paper we present a detailed comparison between two state-of-the-art model-based control techniques for MAV trajectory tracking. A classical Linear Model...
Saved in:
Published in | IFAC-PapersOnLine Vol. 50; no. 1; pp. 3463 - 3469 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2405-8963 2405-8963 |
DOI | 10.1016/j.ifacol.2017.08.849 |
Cover
Loading…
Abstract | Precise trajectory tracking is a crucial property for Micro Air Vehicles (MAVs) to operate in cluttered environment or under disturbances. In this paper we present a detailed comparison between two state-of-the-art model-based control techniques for MAV trajectory tracking. A classical Linear Model Predictive Controller (LMPC) is presented and compared against a more advanced Nonlinear Model Predictive Controller (NMPC) that considers the full system model. In a careful analysis we show the advantages and disadvantages of the two implementations in terms of speed and tracking performance. This is achieved by evaluating hovering performance, step response, and aggressive trajectory tracking under nominal conditions and under external wind disturbances. |
---|---|
AbstractList | Precise trajectory tracking is a crucial property for Micro Air Vehicles (MAVs) to operate in cluttered environment or under disturbances. In this paper we present a detailed comparison between two state-of-the-art model-based control techniques for MAV trajectory tracking. A classical Linear Model Predictive Controller (LMPC) is presented and compared against a more advanced Nonlinear Model Predictive Controller (NMPC) that considers the full system model. In a careful analysis we show the advantages and disadvantages of the two implementations in terms of speed and tracking performance. This is achieved by evaluating hovering performance, step response, and aggressive trajectory tracking under nominal conditions and under external wind disturbances. |
Author | Burri, Michael Kamel, Mina Siegwart, Roland |
Author_xml | – sequence: 1 givenname: Mina surname: Kamel fullname: Kamel, Mina email: fmina@ethz.ch organization: Authors are with the Autonomous Systems Lab, ETH Zürich, Switzerland – sequence: 2 givenname: Michael surname: Burri fullname: Burri, Michael organization: Authors are with the Autonomous Systems Lab, ETH Zürich, Switzerland – sequence: 3 givenname: Roland surname: Siegwart fullname: Siegwart, Roland organization: Authors are with the Autonomous Systems Lab, ETH Zürich, Switzerland |
BookMark | eNqFkM9KxDAQxoMouK77Bh7yAq1Jm3ZTD8Ky-A92VWTVixDSZKKpsVmSsuDb21IP4kFP880M3_DN7wjtt74FhE4oSSmh5WmTWiOVd2lG6DwlPOWs2kOTjJEi4VWZ7__Qh2gWY0MIyaqSzSs-QS8r24IMeBfxrW_d2Kzvl9j4gDdBNqA6Hz4Hqd5t-4oX262zoHHn8YPvZL96HsZrq4LHCwhWOvwEb1Y5iMfowEgXYfZdp-jx8mKzvE5Wd1c3y8UqUYzyLmFZnZe14lQapSvGaVlrTsBoVUPONJRGA9QSinllioLkCkCXvCCVNJqQWudTxMa7fYYYAxixDfajzyYoEQMk0YgRkhggCcJFD6m3nf2yKdvJzvq2C9K6_8znoxn6x3YWgojKQqtA29AzE9rbvw98ATrGiWA |
CitedBy_id | crossref_primary_10_1109_LRA_2020_3007451 crossref_primary_10_1108_AEAT_06_2021_0173 crossref_primary_10_1109_TIE_2022_3212397 crossref_primary_10_1016_j_biosystemseng_2021_11_008 crossref_primary_10_3390_s21186223 crossref_primary_10_1177_02783649231207655 crossref_primary_10_31590_ejosat_898753 crossref_primary_10_1109_ACCESS_2020_3024685 crossref_primary_10_1109_LRA_2020_2967281 crossref_primary_10_1109_TCST_2022_3188399 crossref_primary_10_1016_j_ifacol_2021_08_529 crossref_primary_10_1007_s42405_018_0061_z crossref_primary_10_1109_TRO_2024_3431988 crossref_primary_10_15446_ing_investig_109708 crossref_primary_10_1002_rob_21950 crossref_primary_10_1016_j_mechatronics_2021_102483 crossref_primary_10_1049_itr2_12403 crossref_primary_10_1177_0959651819847053 crossref_primary_10_1016_j_arcontrol_2021_10_013 crossref_primary_10_1177_0954410019886963 crossref_primary_10_1007_s10846_021_01526_8 crossref_primary_10_1109_TRO_2024_3400838 crossref_primary_10_1016_j_ifacol_2021_08_532 crossref_primary_10_3390_en15239207 crossref_primary_10_1007_s10846_021_01501_3 crossref_primary_10_7746_jkros_2023_18_3_316 crossref_primary_10_1109_TIE_2021_3055181 crossref_primary_10_1109_TRO_2022_3177279 crossref_primary_10_3390_drones8030072 crossref_primary_10_1049_ccs2_12081 crossref_primary_10_1177_0278364919854131 crossref_primary_10_1002_rob_21824 crossref_primary_10_1049_iet_cta_2019_0596 crossref_primary_10_1109_LRA_2021_3110316 crossref_primary_10_1007_s10846_020_01203_2 crossref_primary_10_1007_s41870_020_00436_6 crossref_primary_10_1177_09544100241286135 crossref_primary_10_1109_LRA_2023_3236839 crossref_primary_10_1016_j_ifacol_2020_12_204 crossref_primary_10_1007_s10846_022_01625_0 crossref_primary_10_1007_s10846_018_0791_y crossref_primary_10_1109_ACCESS_2021_3132963 crossref_primary_10_1093_jcde_qwaa036 crossref_primary_10_37394_232011_2021_16_10 crossref_primary_10_1109_LRA_2021_3131690 crossref_primary_10_1016_j_arcontrol_2019_08_004 crossref_primary_10_1007_s42401_024_00313_1 crossref_primary_10_1109_TCST_2024_3366695 crossref_primary_10_1109_ACCESS_2019_2918686 crossref_primary_10_1109_ACCESS_2020_2966240 crossref_primary_10_1080_01691864_2018_1515660 crossref_primary_10_1007_s10846_020_01250_9 crossref_primary_10_1109_LCSYS_2020_3000561 crossref_primary_10_1016_j_ifacol_2020_12_2411 crossref_primary_10_3390_sym13112125 crossref_primary_10_1109_TMECH_2022_3231405 crossref_primary_10_3390_s18092859 crossref_primary_10_1177_0142331220971423 crossref_primary_10_3390_drones7020144 crossref_primary_10_1007_s10846_021_01522_y crossref_primary_10_3390_s23073711 crossref_primary_10_1016_j_compchemeng_2024_108802 crossref_primary_10_1109_LRA_2024_3386053 crossref_primary_10_1002_rob_22182 crossref_primary_10_1049_cth2_12588 crossref_primary_10_3390_en16052143 |
Cites_doi | 10.1109/MRA.2012.2206474 10.1002/oca.939 10.1109/ICRA.2016.7487281 10.1177/0278364911434236 10.3182/20090916-3-ES-3003.00004 10.1109/IROS.2016.7759713 10.1109/IROS.2013.6696696 10.1007/s10846-015-0238-7 10.1007/s11081-011-9176-9 |
ContentType | Journal Article |
Copyright | 2017 |
Copyright_xml | – notice: 2017 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ifacol.2017.08.849 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2405-8963 |
EndPage | 3469 |
ExternalDocumentID | 10_1016_j_ifacol_2017_08_849 S2405896317313083 |
GroupedDBID | 0R~ 0SF 457 AAJQP AALRI AAXUO ABMAC ACGFS ADBBV ADVLN AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ATDSJ EBS EJD FDB HX~ KQ8 O9- ROL AAYWO AAYXX CITATION |
ID | FETCH-LOGICAL-c418t-42b36bc81afcd94816bd80efdcbe34de6fdeebae579f5503ceed68509afd00bd3 |
ISSN | 2405-8963 |
IngestDate | Tue Jul 01 02:06:02 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 Sat Feb 22 15:41:37 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Keywords | Predictive Control Real-time control Path Following Trajectory Tracking UAVs |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c418t-42b36bc81afcd94816bd80efdcbe34de6fdeebae579f5503ceed68509afd00bd3 |
OpenAccessLink | https://doi.org/10.1016/j.ifacol.2017.08.849 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_ifacol_2017_08_849 crossref_citationtrail_10_1016_j_ifacol_2017_08_849 elsevier_sciencedirect_doi_10_1016_j_ifacol_2017_08_849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IFAC-PapersOnLine |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Borrelli, Bemporard, Morari (bib0007) 2015 Omari, S., Hua, M.D., Ducard, G., and Hamel, T. (2013). Nonlinear control of vtol uavs incorporating flapping dynamics. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2419–2425. doi:10.1109/IROS.2013. 6696696. Bouabdallah, Noth, Siegwart (bib0008) 2004 Kamel, M. (2016). Open source mav mpc controllers. URL https://github.com/ethz-asl/mav_control_rw. Berkenkamp, Schoellig (bib0003) 2015 Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., and Sieg-wart, R. (2016b). Receding horizon path planning for 3d exploration and surface inspection. Autonomous Robots, 1– 16. Meier, L. (2016). Pixhawk autopilot. URL https:// pixhawk.org. Accessed: 2016-11-08. Burri, Nikolic, Hürzeler, Caprari, Siegwart (bib0009) 2012 Oettershagen, Stastny, Mantel, Melzer, Rudin, Gohl, Agamennoni, Alexis, Siegwart (bib0019) 2016 Mattingley, Boyd (bib0016) 2012; 13 Lee, Leoky, McClamroch (bib0013) 2010 Mahony, Kumar, Corke (bib0015) 2012; 19 Kamel, Alexis, Achtelik, Siegwart (bib0012) 2015 Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., and Sieg-wart, R. (2016a). Receding horizon ”next-best-view” planner for 3d exploration. In 2016 IEEE International Conference on Robotics and Automation (ICRA), 1462–1468. doi:10. 1109/ICRA.2016.7487281. Mellinger, D., Michael, N., and Kumar, V. (2012). Trajectory generation and control for precise aggressive maneuvers with quadrotors. The International Journal of Robotics Research, 0278364911434236. Lynen, Achtelik, Weiss, Chli, Siegwart (bib0014) 2013 Bemporad, A., Pascucci, C., and Rocchi, C. (2009). Hierarchical and hybrid model predictive control of quadcopter air vehicles. {IFAC} Proceedings Volumes, 42(17), 14 – 19. doi: http://dx.doi.org/10.3182/20090916-3-ES-3003.00004. 3rd {IFAC} Conference on Analysis and Design of Hybrid Systems. Houska, Ferreau, Diehl (bib0010) 2011; 32 Blösch, Weiss, Scaramuzza, Siegwart (bib0006) 2010 Alexis, Papachristos, Siegwart, Tzes (bib0001) 2016; 81 Steich, K., Kamel, M., Beardsleys, P., Obrist, M.K., Siegwart, R., and Lachat, T. (2016). Tree cavity inspection using aerial robots. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 10.1016/j.ifacol.2017.08.849_bib0020 Berkenkamp (10.1016/j.ifacol.2017.08.849_bib0003) 2015 10.1016/j.ifacol.2017.08.849_bib0011 10.1016/j.ifacol.2017.08.849_bib0021 10.1016/j.ifacol.2017.08.849_bib0002 10.1016/j.ifacol.2017.08.849_bib0004 Lynen (10.1016/j.ifacol.2017.08.849_bib0014) 2013 Bouabdallah (10.1016/j.ifacol.2017.08.849_bib0008) 2004 Mahony (10.1016/j.ifacol.2017.08.849_bib0015) 2012; 19 Oettershagen (10.1016/j.ifacol.2017.08.849_bib0019) 2016 Kamel (10.1016/j.ifacol.2017.08.849_bib0012) 2015 Houska (10.1016/j.ifacol.2017.08.849_bib0010) 2011; 32 Alexis (10.1016/j.ifacol.2017.08.849_bib0001) 2016; 81 Burri (10.1016/j.ifacol.2017.08.849_bib0009) 2012 Mattingley (10.1016/j.ifacol.2017.08.849_bib0016) 2012; 13 Blösch (10.1016/j.ifacol.2017.08.849_bib0006) 2010 10.1016/j.ifacol.2017.08.849_bib0017 10.1016/j.ifacol.2017.08.849_bib0005 Borrelli (10.1016/j.ifacol.2017.08.849_bib0007) 2015 10.1016/j.ifacol.2017.08.849_bib0018 Lee (10.1016/j.ifacol.2017.08.849_bib0013) 2010 |
References_xml | – reference: Steich, K., Kamel, M., Beardsleys, P., Obrist, M.K., Siegwart, R., and Lachat, T. (2016). Tree cavity inspection using aerial robots. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). – volume: 19 start-page: 20 year: 2012 end-page: 32 ident: bib0015 article-title: Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor publication-title: IEEE Robotics Automation Magazine – reference: Bemporad, A., Pascucci, C., and Rocchi, C. (2009). Hierarchical and hybrid model predictive control of quadcopter air vehicles. {IFAC} Proceedings Volumes, 42(17), 14 – 19. doi: http://dx.doi.org/10.3182/20090916-3-ES-3003.00004. 3rd {IFAC} Conference on Analysis and Design of Hybrid Systems. – year: 2016 ident: bib0019 publication-title: Long-endurance sensing and mapping using a hand-launchable solar-powered uav. In Field and Service Robotics, 441–454 – year: 2010 ident: bib0006 publication-title: Vision based mav navigation in unknown and unstructured environments. In Robotics and automation (ICRA), 2010 IEEE international conference on, 21–28 – volume: 81 start-page: 443 year: 2016 end-page: 469 ident: bib0001 article-title: Robust model predictive flight control of unmanned rotor-crafts publication-title: Journal of Intelligent & Robotic Systems – reference: Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., and Sieg-wart, R. (2016b). Receding horizon path planning for 3d exploration and surface inspection. Autonomous Robots, 1– 16. – year: 2013 ident: bib0014 publication-title: A robust and modular multi-sensor fusion approach applied to mav navigation. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, 3923– 3929 – year: 2010 ident: bib0013 publication-title: Geometric tracking control of a quadrotor uav on se (3). In 49th IEEE conference on decision and control (CDC), 5420– 5425 – reference: Mellinger, D., Michael, N., and Kumar, V. (2012). Trajectory generation and control for precise aggressive maneuvers with quadrotors. The International Journal of Robotics Research, 0278364911434236. – year: 2004 ident: bib0008 publication-title: Pid vs lq control techniques applied to an indoor micro quadrotor. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3, 2451–2456 – volume: 32 start-page: 298 year: 2011 end-page: 312 ident: bib0010 article-title: ACADO Toolkit – An Open Source Framework for Automatic Control and Dynamic Optimization publication-title: Optimal Control Applications and Methods – volume: 13 start-page: 1 year: 2012 end-page: 27 ident: bib0016 article-title: Cvxgen: A code generator for embedded convex optimization publication-title: Optimization and Engineering – start-page: 2501 year: 2015 end-page: 2506 ident: bib0003 article-title: Safe and robust learning control with Gaussian processes publication-title: In Proc. of the European Control Conference (ECC) – reference: Kamel, M. (2016). Open source mav mpc controllers. URL https://github.com/ethz-asl/mav_control_rw. – reference: Omari, S., Hua, M.D., Ducard, G., and Hamel, T. (2013). Nonlinear control of vtol uavs incorporating flapping dynamics. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2419–2425. doi:10.1109/IROS.2013. 6696696. – reference: Meier, L. (2016). Pixhawk autopilot. URL https:// pixhawk.org. Accessed: 2016-11-08. – year: 2015 ident: bib0007 publication-title: Predictive Control for Linear and Hybrid Systems – year: 2015 ident: bib0012 publication-title: Fast nonlinear model predictive control for multicopter attitude tracking on so (3). In Control Applications (CCA), 2015 IEEE Conference on, 1160–1166 – reference: Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., and Sieg-wart, R. (2016a). Receding horizon ”next-best-view” planner for 3d exploration. In 2016 IEEE International Conference on Robotics and Automation (ICRA), 1462–1468. doi:10. 1109/ICRA.2016.7487281. – year: 2012 ident: bib0009 publication-title: Aerial service robots for visual inspection of thermal power plant boiler systems. In Applied Robotics for the Power Industry (CARPI), 2012 2nd International Conference on, 70–75 – volume: 19 start-page: 20 issue: 3 year: 2012 ident: 10.1016/j.ifacol.2017.08.849_bib0015 article-title: Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor publication-title: IEEE Robotics Automation Magazine doi: 10.1109/MRA.2012.2206474 – volume: 32 start-page: 298 issue: 3 year: 2011 ident: 10.1016/j.ifacol.2017.08.849_bib0010 article-title: ACADO Toolkit – An Open Source Framework for Automatic Control and Dynamic Optimization publication-title: Optimal Control Applications and Methods doi: 10.1002/oca.939 – ident: 10.1016/j.ifacol.2017.08.849_bib0017 – year: 2015 ident: 10.1016/j.ifacol.2017.08.849_bib0012 – start-page: 2501 year: 2015 ident: 10.1016/j.ifacol.2017.08.849_bib0003 article-title: Safe and robust learning control with Gaussian processes publication-title: In Proc. of the European Control Conference (ECC) – ident: 10.1016/j.ifacol.2017.08.849_bib0005 doi: 10.1109/ICRA.2016.7487281 – ident: 10.1016/j.ifacol.2017.08.849_bib0018 doi: 10.1177/0278364911434236 – year: 2016 ident: 10.1016/j.ifacol.2017.08.849_bib0019 – year: 2012 ident: 10.1016/j.ifacol.2017.08.849_bib0009 – ident: 10.1016/j.ifacol.2017.08.849_bib0004 doi: 10.1109/ICRA.2016.7487281 – ident: 10.1016/j.ifacol.2017.08.849_bib0002 doi: 10.3182/20090916-3-ES-3003.00004 – year: 2004 ident: 10.1016/j.ifacol.2017.08.849_bib0008 – ident: 10.1016/j.ifacol.2017.08.849_bib0021 doi: 10.1109/IROS.2016.7759713 – year: 2010 ident: 10.1016/j.ifacol.2017.08.849_bib0013 – year: 2015 ident: 10.1016/j.ifacol.2017.08.849_bib0007 – ident: 10.1016/j.ifacol.2017.08.849_bib0020 doi: 10.1109/IROS.2013.6696696 – year: 2010 ident: 10.1016/j.ifacol.2017.08.849_bib0006 – volume: 81 start-page: 443 issue: 3 year: 2016 ident: 10.1016/j.ifacol.2017.08.849_bib0001 article-title: Robust model predictive flight control of unmanned rotor-crafts publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-015-0238-7 – year: 2013 ident: 10.1016/j.ifacol.2017.08.849_bib0014 – ident: 10.1016/j.ifacol.2017.08.849_bib0011 – volume: 13 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.ifacol.2017.08.849_bib0016 article-title: Cvxgen: A code generator for embedded convex optimization publication-title: Optimization and Engineering doi: 10.1007/s11081-011-9176-9 |
SSID | ssj0002964798 |
Score | 2.1907518 |
Snippet | Precise trajectory tracking is a crucial property for Micro Air Vehicles (MAVs) to operate in cluttered environment or under disturbances. In this paper we... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3463 |
SubjectTerms | Path Following Predictive Control Real-time control Trajectory Tracking UAVs |
Title | Linear vs Nonlinear MPC for Trajectory Tracking Applied to Rotary Wing Micro Aerial Vehicles |
URI | https://dx.doi.org/10.1016/j.ifacol.2017.08.849 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELWgXLggECAKtPKBW-VqN3bW3mMUURVKoJQWekBa2Wu7NEBSwbYV_Hpm_LEJEPHRy2ZjxYnleRk_z848E_JE2tpJqSWrFHdMOGGZ8Uow6fRQw3rsByGmO3lZ7R6J58fD40VKUKgu6cx2-31lXclVrAptYFeskv0Py_ZfCg1wD_aFK1gYrv9kY9hIog7PBfiqqHiBojz745A6CIvQNETkv-Ft-zGEPxLlBL55MO8wX-4dNk8wKW9rFEa89dZ9CJlyy6z12c5ozPb1GVDFV7MXS0_i9_Tn-JR_kk7hTpURsXx9OSUfgzin7uRSxxKhg3k6OqQPOZSyT09NcbBcC7NIPAJ3BdRgyFSd3JVb0Zb8bRSa_QlX0XlykTvnt_VKJx_jDdPtU4_K3pieJ1GGVUXt01_ks9_gGHAIpeSwXit-ndwYwJYCnfjea9XH4_DxswxHJ_eDzpWWIR3w9x9bzWSW2MnhbXIrbSvoKGLkDrnmZnfJ-4gPevGV9viggA8K-KALfNCMD5rwQbs5jfigiA8a8EEjPmjGxz1ytPP0cLzL0mkarBWl6pgYGF6ZVpXatxY1eipjVeG8bY3jwrrKW-eMdkNZe9i2cmRPlQI-qb0tCmP5fbI2m8_cA0KFqbnQpa1boK_ce1MXvhy0WsJLaZVZJzzPTNMmqXk88eRTk3MKp02czwbnsylUA_O5Tljf6yxKrfzl8zJPepPoYqSBDQDljz0fXrnnI3Jz8Yd4TNa6L-duA1hpZzYDnH4ApT-ORA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+vs+Nonlinear+MPC+for+Trajectory+Tracking+Applied+to+Rotary+Wing+Micro+Aerial+Vehicles&rft.jtitle=IFAC-PapersOnLine&rft.au=Kamel%2C+Mina&rft.au=Burri%2C+Michael&rft.au=Siegwart%2C+Roland&rft.date=2017-07-01&rft.pub=Elsevier+Ltd&rft.issn=2405-8963&rft.eissn=2405-8963&rft.volume=50&rft.issue=1&rft.spage=3463&rft.epage=3469&rft_id=info:doi/10.1016%2Fj.ifacol.2017.08.849&rft.externalDocID=S2405896317313083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon |