Linear vs Nonlinear MPC for Trajectory Tracking Applied to Rotary Wing Micro Aerial Vehicles

Precise trajectory tracking is a crucial property for Micro Air Vehicles (MAVs) to operate in cluttered environment or under disturbances. In this paper we present a detailed comparison between two state-of-the-art model-based control techniques for MAV trajectory tracking. A classical Linear Model...

Full description

Saved in:
Bibliographic Details
Published inIFAC-PapersOnLine Vol. 50; no. 1; pp. 3463 - 3469
Main Authors Kamel, Mina, Burri, Michael, Siegwart, Roland
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2017
Subjects
Online AccessGet full text
ISSN2405-8963
2405-8963
DOI10.1016/j.ifacol.2017.08.849

Cover

Loading…
Abstract Precise trajectory tracking is a crucial property for Micro Air Vehicles (MAVs) to operate in cluttered environment or under disturbances. In this paper we present a detailed comparison between two state-of-the-art model-based control techniques for MAV trajectory tracking. A classical Linear Model Predictive Controller (LMPC) is presented and compared against a more advanced Nonlinear Model Predictive Controller (NMPC) that considers the full system model. In a careful analysis we show the advantages and disadvantages of the two implementations in terms of speed and tracking performance. This is achieved by evaluating hovering performance, step response, and aggressive trajectory tracking under nominal conditions and under external wind disturbances.
AbstractList Precise trajectory tracking is a crucial property for Micro Air Vehicles (MAVs) to operate in cluttered environment or under disturbances. In this paper we present a detailed comparison between two state-of-the-art model-based control techniques for MAV trajectory tracking. A classical Linear Model Predictive Controller (LMPC) is presented and compared against a more advanced Nonlinear Model Predictive Controller (NMPC) that considers the full system model. In a careful analysis we show the advantages and disadvantages of the two implementations in terms of speed and tracking performance. This is achieved by evaluating hovering performance, step response, and aggressive trajectory tracking under nominal conditions and under external wind disturbances.
Author Burri, Michael
Kamel, Mina
Siegwart, Roland
Author_xml – sequence: 1
  givenname: Mina
  surname: Kamel
  fullname: Kamel, Mina
  email: fmina@ethz.ch
  organization: Authors are with the Autonomous Systems Lab, ETH Zürich, Switzerland
– sequence: 2
  givenname: Michael
  surname: Burri
  fullname: Burri, Michael
  organization: Authors are with the Autonomous Systems Lab, ETH Zürich, Switzerland
– sequence: 3
  givenname: Roland
  surname: Siegwart
  fullname: Siegwart, Roland
  organization: Authors are with the Autonomous Systems Lab, ETH Zürich, Switzerland
BookMark eNqFkM9KxDAQxoMouK77Bh7yAq1Jm3ZTD8Ky-A92VWTVixDSZKKpsVmSsuDb21IP4kFP880M3_DN7wjtt74FhE4oSSmh5WmTWiOVd2lG6DwlPOWs2kOTjJEi4VWZ7__Qh2gWY0MIyaqSzSs-QS8r24IMeBfxrW_d2Kzvl9j4gDdBNqA6Hz4Hqd5t-4oX262zoHHn8YPvZL96HsZrq4LHCwhWOvwEb1Y5iMfowEgXYfZdp-jx8mKzvE5Wd1c3y8UqUYzyLmFZnZe14lQapSvGaVlrTsBoVUPONJRGA9QSinllioLkCkCXvCCVNJqQWudTxMa7fYYYAxixDfajzyYoEQMk0YgRkhggCcJFD6m3nf2yKdvJzvq2C9K6_8znoxn6x3YWgojKQqtA29AzE9rbvw98ATrGiWA
CitedBy_id crossref_primary_10_1109_LRA_2020_3007451
crossref_primary_10_1108_AEAT_06_2021_0173
crossref_primary_10_1109_TIE_2022_3212397
crossref_primary_10_1016_j_biosystemseng_2021_11_008
crossref_primary_10_3390_s21186223
crossref_primary_10_1177_02783649231207655
crossref_primary_10_31590_ejosat_898753
crossref_primary_10_1109_ACCESS_2020_3024685
crossref_primary_10_1109_LRA_2020_2967281
crossref_primary_10_1109_TCST_2022_3188399
crossref_primary_10_1016_j_ifacol_2021_08_529
crossref_primary_10_1007_s42405_018_0061_z
crossref_primary_10_1109_TRO_2024_3431988
crossref_primary_10_15446_ing_investig_109708
crossref_primary_10_1002_rob_21950
crossref_primary_10_1016_j_mechatronics_2021_102483
crossref_primary_10_1049_itr2_12403
crossref_primary_10_1177_0959651819847053
crossref_primary_10_1016_j_arcontrol_2021_10_013
crossref_primary_10_1177_0954410019886963
crossref_primary_10_1007_s10846_021_01526_8
crossref_primary_10_1109_TRO_2024_3400838
crossref_primary_10_1016_j_ifacol_2021_08_532
crossref_primary_10_3390_en15239207
crossref_primary_10_1007_s10846_021_01501_3
crossref_primary_10_7746_jkros_2023_18_3_316
crossref_primary_10_1109_TIE_2021_3055181
crossref_primary_10_1109_TRO_2022_3177279
crossref_primary_10_3390_drones8030072
crossref_primary_10_1049_ccs2_12081
crossref_primary_10_1177_0278364919854131
crossref_primary_10_1002_rob_21824
crossref_primary_10_1049_iet_cta_2019_0596
crossref_primary_10_1109_LRA_2021_3110316
crossref_primary_10_1007_s10846_020_01203_2
crossref_primary_10_1007_s41870_020_00436_6
crossref_primary_10_1177_09544100241286135
crossref_primary_10_1109_LRA_2023_3236839
crossref_primary_10_1016_j_ifacol_2020_12_204
crossref_primary_10_1007_s10846_022_01625_0
crossref_primary_10_1007_s10846_018_0791_y
crossref_primary_10_1109_ACCESS_2021_3132963
crossref_primary_10_1093_jcde_qwaa036
crossref_primary_10_37394_232011_2021_16_10
crossref_primary_10_1109_LRA_2021_3131690
crossref_primary_10_1016_j_arcontrol_2019_08_004
crossref_primary_10_1007_s42401_024_00313_1
crossref_primary_10_1109_TCST_2024_3366695
crossref_primary_10_1109_ACCESS_2019_2918686
crossref_primary_10_1109_ACCESS_2020_2966240
crossref_primary_10_1080_01691864_2018_1515660
crossref_primary_10_1007_s10846_020_01250_9
crossref_primary_10_1109_LCSYS_2020_3000561
crossref_primary_10_1016_j_ifacol_2020_12_2411
crossref_primary_10_3390_sym13112125
crossref_primary_10_1109_TMECH_2022_3231405
crossref_primary_10_3390_s18092859
crossref_primary_10_1177_0142331220971423
crossref_primary_10_3390_drones7020144
crossref_primary_10_1007_s10846_021_01522_y
crossref_primary_10_3390_s23073711
crossref_primary_10_1016_j_compchemeng_2024_108802
crossref_primary_10_1109_LRA_2024_3386053
crossref_primary_10_1002_rob_22182
crossref_primary_10_1049_cth2_12588
crossref_primary_10_3390_en16052143
Cites_doi 10.1109/MRA.2012.2206474
10.1002/oca.939
10.1109/ICRA.2016.7487281
10.1177/0278364911434236
10.3182/20090916-3-ES-3003.00004
10.1109/IROS.2016.7759713
10.1109/IROS.2013.6696696
10.1007/s10846-015-0238-7
10.1007/s11081-011-9176-9
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.ifacol.2017.08.849
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2405-8963
EndPage 3469
ExternalDocumentID 10_1016_j_ifacol_2017_08_849
S2405896317313083
GroupedDBID 0R~
0SF
457
AAJQP
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ATDSJ
EBS
EJD
FDB
HX~
KQ8
O9-
ROL
AAYWO
AAYXX
CITATION
ID FETCH-LOGICAL-c418t-42b36bc81afcd94816bd80efdcbe34de6fdeebae579f5503ceed68509afd00bd3
ISSN 2405-8963
IngestDate Tue Jul 01 02:06:02 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
Sat Feb 22 15:41:37 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords Predictive Control
Real-time control
Path Following
Trajectory Tracking
UAVs
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c418t-42b36bc81afcd94816bd80efdcbe34de6fdeebae579f5503ceed68509afd00bd3
OpenAccessLink https://doi.org/10.1016/j.ifacol.2017.08.849
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_ifacol_2017_08_849
crossref_citationtrail_10_1016_j_ifacol_2017_08_849
elsevier_sciencedirect_doi_10_1016_j_ifacol_2017_08_849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationTitle IFAC-PapersOnLine
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Borrelli, Bemporard, Morari (bib0007) 2015
Omari, S., Hua, M.D., Ducard, G., and Hamel, T. (2013). Nonlinear control of vtol uavs incorporating flapping dynamics. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2419–2425. doi:10.1109/IROS.2013. 6696696.
Bouabdallah, Noth, Siegwart (bib0008) 2004
Kamel, M. (2016). Open source mav mpc controllers. URL https://github.com/ethz-asl/mav_control_rw.
Berkenkamp, Schoellig (bib0003) 2015
Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., and Sieg-wart, R. (2016b). Receding horizon path planning for 3d exploration and surface inspection. Autonomous Robots, 1– 16.
Meier, L. (2016). Pixhawk autopilot. URL https:// pixhawk.org. Accessed: 2016-11-08.
Burri, Nikolic, Hürzeler, Caprari, Siegwart (bib0009) 2012
Oettershagen, Stastny, Mantel, Melzer, Rudin, Gohl, Agamennoni, Alexis, Siegwart (bib0019) 2016
Mattingley, Boyd (bib0016) 2012; 13
Lee, Leoky, McClamroch (bib0013) 2010
Mahony, Kumar, Corke (bib0015) 2012; 19
Kamel, Alexis, Achtelik, Siegwart (bib0012) 2015
Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., and Sieg-wart, R. (2016a). Receding horizon ”next-best-view” planner for 3d exploration. In 2016 IEEE International Conference on Robotics and Automation (ICRA), 1462–1468. doi:10. 1109/ICRA.2016.7487281.
Mellinger, D., Michael, N., and Kumar, V. (2012). Trajectory generation and control for precise aggressive maneuvers with quadrotors. The International Journal of Robotics Research, 0278364911434236.
Lynen, Achtelik, Weiss, Chli, Siegwart (bib0014) 2013
Bemporad, A., Pascucci, C., and Rocchi, C. (2009). Hierarchical and hybrid model predictive control of quadcopter air vehicles. {IFAC} Proceedings Volumes, 42(17), 14 – 19. doi: http://dx.doi.org/10.3182/20090916-3-ES-3003.00004. 3rd {IFAC} Conference on Analysis and Design of Hybrid Systems.
Houska, Ferreau, Diehl (bib0010) 2011; 32
Blösch, Weiss, Scaramuzza, Siegwart (bib0006) 2010
Alexis, Papachristos, Siegwart, Tzes (bib0001) 2016; 81
Steich, K., Kamel, M., Beardsleys, P., Obrist, M.K., Siegwart, R., and Lachat, T. (2016). Tree cavity inspection using aerial robots. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
10.1016/j.ifacol.2017.08.849_bib0020
Berkenkamp (10.1016/j.ifacol.2017.08.849_bib0003) 2015
10.1016/j.ifacol.2017.08.849_bib0011
10.1016/j.ifacol.2017.08.849_bib0021
10.1016/j.ifacol.2017.08.849_bib0002
10.1016/j.ifacol.2017.08.849_bib0004
Lynen (10.1016/j.ifacol.2017.08.849_bib0014) 2013
Bouabdallah (10.1016/j.ifacol.2017.08.849_bib0008) 2004
Mahony (10.1016/j.ifacol.2017.08.849_bib0015) 2012; 19
Oettershagen (10.1016/j.ifacol.2017.08.849_bib0019) 2016
Kamel (10.1016/j.ifacol.2017.08.849_bib0012) 2015
Houska (10.1016/j.ifacol.2017.08.849_bib0010) 2011; 32
Alexis (10.1016/j.ifacol.2017.08.849_bib0001) 2016; 81
Burri (10.1016/j.ifacol.2017.08.849_bib0009) 2012
Mattingley (10.1016/j.ifacol.2017.08.849_bib0016) 2012; 13
Blösch (10.1016/j.ifacol.2017.08.849_bib0006) 2010
10.1016/j.ifacol.2017.08.849_bib0017
10.1016/j.ifacol.2017.08.849_bib0005
Borrelli (10.1016/j.ifacol.2017.08.849_bib0007) 2015
10.1016/j.ifacol.2017.08.849_bib0018
Lee (10.1016/j.ifacol.2017.08.849_bib0013) 2010
References_xml – reference: Steich, K., Kamel, M., Beardsleys, P., Obrist, M.K., Siegwart, R., and Lachat, T. (2016). Tree cavity inspection using aerial robots. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
– volume: 19
  start-page: 20
  year: 2012
  end-page: 32
  ident: bib0015
  article-title: Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor
  publication-title: IEEE Robotics Automation Magazine
– reference: Bemporad, A., Pascucci, C., and Rocchi, C. (2009). Hierarchical and hybrid model predictive control of quadcopter air vehicles. {IFAC} Proceedings Volumes, 42(17), 14 – 19. doi: http://dx.doi.org/10.3182/20090916-3-ES-3003.00004. 3rd {IFAC} Conference on Analysis and Design of Hybrid Systems.
– year: 2016
  ident: bib0019
  publication-title: Long-endurance sensing and mapping using a hand-launchable solar-powered uav. In Field and Service Robotics, 441–454
– year: 2010
  ident: bib0006
  publication-title: Vision based mav navigation in unknown and unstructured environments. In Robotics and automation (ICRA), 2010 IEEE international conference on, 21–28
– volume: 81
  start-page: 443
  year: 2016
  end-page: 469
  ident: bib0001
  article-title: Robust model predictive flight control of unmanned rotor-crafts
  publication-title: Journal of Intelligent & Robotic Systems
– reference: Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., and Sieg-wart, R. (2016b). Receding horizon path planning for 3d exploration and surface inspection. Autonomous Robots, 1– 16.
– year: 2013
  ident: bib0014
  publication-title: A robust and modular multi-sensor fusion approach applied to mav navigation. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, 3923– 3929
– year: 2010
  ident: bib0013
  publication-title: Geometric tracking control of a quadrotor uav on se (3). In 49th IEEE conference on decision and control (CDC), 5420– 5425
– reference: Mellinger, D., Michael, N., and Kumar, V. (2012). Trajectory generation and control for precise aggressive maneuvers with quadrotors. The International Journal of Robotics Research, 0278364911434236.
– year: 2004
  ident: bib0008
  publication-title: Pid vs lq control techniques applied to an indoor micro quadrotor. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3, 2451–2456
– volume: 32
  start-page: 298
  year: 2011
  end-page: 312
  ident: bib0010
  article-title: ACADO Toolkit – An Open Source Framework for Automatic Control and Dynamic Optimization
  publication-title: Optimal Control Applications and Methods
– volume: 13
  start-page: 1
  year: 2012
  end-page: 27
  ident: bib0016
  article-title: Cvxgen: A code generator for embedded convex optimization
  publication-title: Optimization and Engineering
– start-page: 2501
  year: 2015
  end-page: 2506
  ident: bib0003
  article-title: Safe and robust learning control with Gaussian processes
  publication-title: In Proc. of the European Control Conference (ECC)
– reference: Kamel, M. (2016). Open source mav mpc controllers. URL https://github.com/ethz-asl/mav_control_rw.
– reference: Omari, S., Hua, M.D., Ducard, G., and Hamel, T. (2013). Nonlinear control of vtol uavs incorporating flapping dynamics. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2419–2425. doi:10.1109/IROS.2013. 6696696.
– reference: Meier, L. (2016). Pixhawk autopilot. URL https:// pixhawk.org. Accessed: 2016-11-08.
– year: 2015
  ident: bib0007
  publication-title: Predictive Control for Linear and Hybrid Systems
– year: 2015
  ident: bib0012
  publication-title: Fast nonlinear model predictive control for multicopter attitude tracking on so (3). In Control Applications (CCA), 2015 IEEE Conference on, 1160–1166
– reference: Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., and Sieg-wart, R. (2016a). Receding horizon ”next-best-view” planner for 3d exploration. In 2016 IEEE International Conference on Robotics and Automation (ICRA), 1462–1468. doi:10. 1109/ICRA.2016.7487281.
– year: 2012
  ident: bib0009
  publication-title: Aerial service robots for visual inspection of thermal power plant boiler systems. In Applied Robotics for the Power Industry (CARPI), 2012 2nd International Conference on, 70–75
– volume: 19
  start-page: 20
  issue: 3
  year: 2012
  ident: 10.1016/j.ifacol.2017.08.849_bib0015
  article-title: Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor
  publication-title: IEEE Robotics Automation Magazine
  doi: 10.1109/MRA.2012.2206474
– volume: 32
  start-page: 298
  issue: 3
  year: 2011
  ident: 10.1016/j.ifacol.2017.08.849_bib0010
  article-title: ACADO Toolkit – An Open Source Framework for Automatic Control and Dynamic Optimization
  publication-title: Optimal Control Applications and Methods
  doi: 10.1002/oca.939
– ident: 10.1016/j.ifacol.2017.08.849_bib0017
– year: 2015
  ident: 10.1016/j.ifacol.2017.08.849_bib0012
– start-page: 2501
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.849_bib0003
  article-title: Safe and robust learning control with Gaussian processes
  publication-title: In Proc. of the European Control Conference (ECC)
– ident: 10.1016/j.ifacol.2017.08.849_bib0005
  doi: 10.1109/ICRA.2016.7487281
– ident: 10.1016/j.ifacol.2017.08.849_bib0018
  doi: 10.1177/0278364911434236
– year: 2016
  ident: 10.1016/j.ifacol.2017.08.849_bib0019
– year: 2012
  ident: 10.1016/j.ifacol.2017.08.849_bib0009
– ident: 10.1016/j.ifacol.2017.08.849_bib0004
  doi: 10.1109/ICRA.2016.7487281
– ident: 10.1016/j.ifacol.2017.08.849_bib0002
  doi: 10.3182/20090916-3-ES-3003.00004
– year: 2004
  ident: 10.1016/j.ifacol.2017.08.849_bib0008
– ident: 10.1016/j.ifacol.2017.08.849_bib0021
  doi: 10.1109/IROS.2016.7759713
– year: 2010
  ident: 10.1016/j.ifacol.2017.08.849_bib0013
– year: 2015
  ident: 10.1016/j.ifacol.2017.08.849_bib0007
– ident: 10.1016/j.ifacol.2017.08.849_bib0020
  doi: 10.1109/IROS.2013.6696696
– year: 2010
  ident: 10.1016/j.ifacol.2017.08.849_bib0006
– volume: 81
  start-page: 443
  issue: 3
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.849_bib0001
  article-title: Robust model predictive flight control of unmanned rotor-crafts
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-015-0238-7
– year: 2013
  ident: 10.1016/j.ifacol.2017.08.849_bib0014
– ident: 10.1016/j.ifacol.2017.08.849_bib0011
– volume: 13
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.ifacol.2017.08.849_bib0016
  article-title: Cvxgen: A code generator for embedded convex optimization
  publication-title: Optimization and Engineering
  doi: 10.1007/s11081-011-9176-9
SSID ssj0002964798
Score 2.1907518
Snippet Precise trajectory tracking is a crucial property for Micro Air Vehicles (MAVs) to operate in cluttered environment or under disturbances. In this paper we...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 3463
SubjectTerms Path Following
Predictive Control
Real-time control
Trajectory Tracking
UAVs
Title Linear vs Nonlinear MPC for Trajectory Tracking Applied to Rotary Wing Micro Aerial Vehicles
URI https://dx.doi.org/10.1016/j.ifacol.2017.08.849
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELWgXLggECAKtPKBW-VqN3bW3mMUURVKoJQWekBa2Wu7NEBSwbYV_Hpm_LEJEPHRy2ZjxYnleRk_z848E_JE2tpJqSWrFHdMOGGZ8Uow6fRQw3rsByGmO3lZ7R6J58fD40VKUKgu6cx2-31lXclVrAptYFeskv0Py_ZfCg1wD_aFK1gYrv9kY9hIog7PBfiqqHiBojz745A6CIvQNETkv-Ft-zGEPxLlBL55MO8wX-4dNk8wKW9rFEa89dZ9CJlyy6z12c5ozPb1GVDFV7MXS0_i9_Tn-JR_kk7hTpURsXx9OSUfgzin7uRSxxKhg3k6OqQPOZSyT09NcbBcC7NIPAJ3BdRgyFSd3JVb0Zb8bRSa_QlX0XlykTvnt_VKJx_jDdPtU4_K3pieJ1GGVUXt01_ks9_gGHAIpeSwXit-ndwYwJYCnfjea9XH4_DxswxHJ_eDzpWWIR3w9x9bzWSW2MnhbXIrbSvoKGLkDrnmZnfJ-4gPevGV9viggA8K-KALfNCMD5rwQbs5jfigiA8a8EEjPmjGxz1ytPP0cLzL0mkarBWl6pgYGF6ZVpXatxY1eipjVeG8bY3jwrrKW-eMdkNZe9i2cmRPlQI-qb0tCmP5fbI2m8_cA0KFqbnQpa1boK_ce1MXvhy0WsJLaZVZJzzPTNMmqXk88eRTk3MKp02czwbnsylUA_O5Tljf6yxKrfzl8zJPepPoYqSBDQDljz0fXrnnI3Jz8Yd4TNa6L-duA1hpZzYDnH4ApT-ORA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+vs+Nonlinear+MPC+for+Trajectory+Tracking+Applied+to+Rotary+Wing+Micro+Aerial+Vehicles&rft.jtitle=IFAC-PapersOnLine&rft.au=Kamel%2C+Mina&rft.au=Burri%2C+Michael&rft.au=Siegwart%2C+Roland&rft.date=2017-07-01&rft.pub=Elsevier+Ltd&rft.issn=2405-8963&rft.eissn=2405-8963&rft.volume=50&rft.issue=1&rft.spage=3463&rft.epage=3469&rft_id=info:doi/10.1016%2Fj.ifacol.2017.08.849&rft.externalDocID=S2405896317313083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon