Linear vs Nonlinear MPC for Trajectory Tracking Applied to Rotary Wing Micro Aerial Vehicles
Precise trajectory tracking is a crucial property for Micro Air Vehicles (MAVs) to operate in cluttered environment or under disturbances. In this paper we present a detailed comparison between two state-of-the-art model-based control techniques for MAV trajectory tracking. A classical Linear Model...
Saved in:
Published in | IFAC-PapersOnLine Vol. 50; no. 1; pp. 3463 - 3469 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Precise trajectory tracking is a crucial property for Micro Air Vehicles (MAVs) to operate in cluttered environment or under disturbances. In this paper we present a detailed comparison between two state-of-the-art model-based control techniques for MAV trajectory tracking. A classical Linear Model Predictive Controller (LMPC) is presented and compared against a more advanced Nonlinear Model Predictive Controller (NMPC) that considers the full system model. In a careful analysis we show the advantages and disadvantages of the two implementations in terms of speed and tracking performance. This is achieved by evaluating hovering performance, step response, and aggressive trajectory tracking under nominal conditions and under external wind disturbances. |
---|---|
ISSN: | 2405-8963 2405-8963 |
DOI: | 10.1016/j.ifacol.2017.08.849 |