Designing a hierarchical nanosheet ZSM-35 zeolite to realize more efficient ethanol synthesis from dimethyl ether and syngas

[Display omitted] •A nanosheet HZSM-35 zeolite with hierarchical structure (Hi-NZ35) was designed.•The Hi-NZ35 zeolite achieved excellent catalytic performance for DME carbonylation.•The combination of Hi-NZ35 and CuZnAl catalysts realized more efficient ethanol synthesis. In this work, a dual-catal...

Full description

Saved in:
Bibliographic Details
Published inCatalysis today Vol. 343; pp. 206 - 214
Main Authors Feng, Xiaobo, Zhang, Peipei, Fang, Yuan, Charusiri, Witchakorn, Yao, Jie, Gao, Xinhua, Wei, Qinhong, Reubroycharoen, Prasert, Vitidsant, Tharapong, Yoneyama, Yoshiharu, Yang, Guohui, Tsubaki, Noritatsu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] •A nanosheet HZSM-35 zeolite with hierarchical structure (Hi-NZ35) was designed.•The Hi-NZ35 zeolite achieved excellent catalytic performance for DME carbonylation.•The combination of Hi-NZ35 and CuZnAl catalysts realized more efficient ethanol synthesis. In this work, a dual-catalyst bed reactor packed with the combination of hierarchical nanosheet HZSM-35 (Hi-NZ35) zeolite and CuZnAl catalyst was proposed to realize more efficient ethanol synthesis from dimethyl ether (DME) and syngas (CO+H2). The nanosheet ZSM-35 (NZ35) zeolite was prepared via a direct hydrothermal synthesis route and the CuZnAl catalyst was prepared by co-precipitation method. Moreover, a series of Hi-NZ35x zeolites were obtained from NZ35 zeolite by further treatment with varied NaOH aqueous solution using hydrothermal process (“x” means the NaOH solution concentration of 0.2-0.6 M). The catalysts properties, such as crystallinity, porosity, acidity, morphology and composition, were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, NH3 temperature-programmed desorption (NH3-TPD), H2 temperature-programmed reduction (H2-TPR), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). It was found that Hi-NZ350.4 zeolite was more effective to obtain hierarchical porosity with mesopore volume up to 0.131 cm3 g−1. For single DME carbonylation reaction, the NZ35 zeolite exhibited superior catalytic activity (32.2%) and stability compared with conventional ZSM-35 (CZ35) zeolite. Furthermore, improved catalytic activity (42.0%) was observed on Hi-NZ350.4 zeolite owing to its abundant mesoporous structure. This result revealed that the hierarchical porosity of zeolite could effectively promote the catalytic performance of zeolite for DME carbonylation reaction. For the ethanol synthesis using the optimized catalysts combination of Hi-NZ350.4 zeolite and CuZnAl catalyst, the DME conversion was about 47.2% with higher ethanol productivity of 840.2 mmol kg−1 h−1.
ISSN:0920-5861
1873-4308
DOI:10.1016/j.cattod.2019.02.054