Fabrication and Qualitative Analysis of an Optical Fibre EFPI-Based Temperature Sensor

The following presents a comparison of an extrinsic Fabry–Perot interferometer (EFPI)-based temperature sensor, constructed using a novel diaphragm manufacturing technique, with a reference all-glass EFPI temperature sensor. The novel diaphragm was manufactured using polyvinyl alcohol (PVA). The nov...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 13; p. 4445
Main Authors McGuinness, Fintan, Cloonan, Aidan, Oubaha, Mohamed, Duraibabu, Dinesh Babu, Ali, M. Mahmood, Kilkelly, Gerald, Tobin, Emma, Leen, Gabriel
Format Journal Article
LanguageEnglish
Published MDPI 29.06.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The following presents a comparison of an extrinsic Fabry–Perot interferometer (EFPI)-based temperature sensor, constructed using a novel diaphragm manufacturing technique, with a reference all-glass EFPI temperature sensor. The novel diaphragm was manufactured using polyvinyl alcohol (PVA). The novel sensor fabrication involved fusing a single-mode fibre (SMF) to a length of fused quartz capillary, which has an inner diameter of 132 μm and a 220 μm outer diameter. The capillary was subsequently polished until the distal face of the capillary extended approximately 60 μm beyond that of the single mode fibre. Upon completion of polishing, the assembly is immersed in a solution of PVA. Controlled extraction resulted in creation of a thin diaphragm while simultaneously applying a protective coating to the fusion point of the SMF and capillary. The EFPI sensor is subsequently sealed in a second fluid-filled capillary, thereby creating a novel temperature sensor structure. Both temperature sensors were placed in a thermogravimetric analyser and heated from an indicated 30 °C to 100 °C to qualitatively compare sensitivities. Initial results indicated that the novel manufacturing technique both expedited production and produces a more sensitive sensor when compared to an all-glass construction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s21134445