Pleiotropic Roles of Non-Coding RNAs in TGF-β-Mediated Epithelial-Mesenchymal Transition and Their Functions in Tumor Progression
Epithelial-mesenchymal transition (EMT) is a spatially- and temporally-regulated process involved in physiological and pathological transformations, such as embryonic development and tumor progression. While the role of TGF-β as an EMT-inducer has been extensively documented, the molecular mechanism...
Saved in:
Published in | Cancers Vol. 9; no. 7; p. 75 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.07.2017
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2072-6694 2072-6694 |
DOI | 10.3390/cancers9070075 |
Cover
Abstract | Epithelial-mesenchymal transition (EMT) is a spatially- and temporally-regulated process involved in physiological and pathological transformations, such as embryonic development and tumor progression. While the role of TGF-β as an EMT-inducer has been extensively documented, the molecular mechanisms regulating this transition and their implications in tumor metastasis are still subjects of intensive debates and investigations. TGF-β regulates EMT through both transcriptional and post-transcriptional mechanisms, and recent advances underline the critical roles of non-coding RNAs in these processes. Although microRNAs and lncRNAs have been clearly identified as effectors of TGF-β-mediated EMT, the contributions of other atypical non-coding RNA species, such as piRNAs, snRNAs, snoRNAs, circRNAs, and even housekeeping tRNAs, have only been suggested and remain largely elusive. This review discusses the current literature including the most recent reports emphasizing the regulatory functions of non-coding RNA in TGF-β-mediated EMT, provides original experimental evidence, and advocates in general for a broader approach in the quest of new regulatory RNAs. |
---|---|
AbstractList | Epithelial-mesenchymal transition (EMT) is a spatially- and temporally-regulated process involved in physiological and pathological transformations, such as embryonic development and tumor progression. While the role of TGF-β as an EMT-inducer has been extensively documented, the molecular mechanisms regulating this transition and their implications in tumor metastasis are still subjects of intensive debates and investigations. TGF-β regulates EMT through both transcriptional and post-transcriptional mechanisms, and recent advances underline the critical roles of non-coding RNAs in these processes. Although microRNAs and lncRNAs have been clearly identified as effectors of TGF-β-mediated EMT, the contributions of other atypical non-coding RNA species, such as piRNAs, snRNAs, snoRNAs, circRNAs, and even housekeeping tRNAs, have only been suggested and remain largely elusive. This review discusses the current literature including the most recent reports emphasizing the regulatory functions of non-coding RNA in TGF-β-mediated EMT, provides original experimental evidence, and advocates in general for a broader approach in the quest of new regulatory RNAs. Epithelial-mesenchymal transition (EMT) is a spatially- and temporally-regulated process involved in physiological and pathological transformations, such as embryonic development and tumor progression. While the role of TGF-β as an EMT-inducer has been extensively documented, the molecular mechanisms regulating this transition and their implications in tumor metastasis are still subjects of intensive debates and investigations. TGF-β regulates EMT through both transcriptional and post-transcriptional mechanisms, and recent advances underline the critical roles of non-coding RNAs in these processes. Although microRNAs and lncRNAs have been clearly identified as effectors of TGF-β-mediated EMT, the contributions of other atypical non-coding RNA species, such as piRNAs, snRNAs, snoRNAs, circRNAs, and even housekeeping tRNAs, have only been suggested and remain largely elusive. This review discusses the current literature including the most recent reports emphasizing the regulatory functions of non-coding RNA in TGF-β-mediated EMT, provides original experimental evidence, and advocates in general for a broader approach in the quest of new regulatory RNAs.Epithelial-mesenchymal transition (EMT) is a spatially- and temporally-regulated process involved in physiological and pathological transformations, such as embryonic development and tumor progression. While the role of TGF-β as an EMT-inducer has been extensively documented, the molecular mechanisms regulating this transition and their implications in tumor metastasis are still subjects of intensive debates and investigations. TGF-β regulates EMT through both transcriptional and post-transcriptional mechanisms, and recent advances underline the critical roles of non-coding RNAs in these processes. Although microRNAs and lncRNAs have been clearly identified as effectors of TGF-β-mediated EMT, the contributions of other atypical non-coding RNA species, such as piRNAs, snRNAs, snoRNAs, circRNAs, and even housekeeping tRNAs, have only been suggested and remain largely elusive. This review discusses the current literature including the most recent reports emphasizing the regulatory functions of non-coding RNA in TGF-β-mediated EMT, provides original experimental evidence, and advocates in general for a broader approach in the quest of new regulatory RNAs. |
Author | Grelet, Simon Geslain, Renaud McShane, Ariel Howe, Philip H. |
AuthorAffiliation | 1 Department of Biochemistry and Molecular Biology, MUSC, Charleston, SC 29425, USA; grelet@musc.edu 2 Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC 29424, USA; mcshaneab@g.cofc.edu |
AuthorAffiliation_xml | – name: 1 Department of Biochemistry and Molecular Biology, MUSC, Charleston, SC 29425, USA; grelet@musc.edu – name: 2 Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC 29424, USA; mcshaneab@g.cofc.edu |
Author_xml | – sequence: 1 givenname: Simon surname: Grelet fullname: Grelet, Simon – sequence: 2 givenname: Ariel surname: McShane fullname: McShane, Ariel – sequence: 3 givenname: Renaud surname: Geslain fullname: Geslain, Renaud – sequence: 4 givenname: Philip H. surname: Howe fullname: Howe, Philip H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28671581$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uk1LXDEUDcVSrbrtsgS66ebZfLx8bQoyOLZgVWS6Dpm8vJlIXjJN3iu49Sf5Q_qbmmG0qNBsbjg553Bu7n0P9mKKDoAPGJ1QqtAXa6J1uSgkEBLsDTggSJCGc9XuPbvvg-NSblE9lGLBxTuwTyQXmEl8AO6vg_NpzGnjLbxJwRWYeniZYjNLnY8reHN5WqCPcHE-b_48ND9c583oOni28ePaBW9CxYqLdn03mAAX2cTiR58iNLGDi7XzGc6naLfQzmgaUobXOa2yK6WiR-Btb0Jxx4_1EPycny1m35qLq_Pvs9OLxrZYjg02XCy5WlomBGuxERwRzIm1Sjq-7BVBPeU9dbhVkknGOk6N6bBgQkrWS0sPwded72ZaDq6zLo7ZBL3JfjD5Tifj9cuX6Nd6lX5rxijhGFeDz48GOf2aXBn14It1IZjo0lQ0VpgxphhllfrpFfU2TTnW9jTBSFLFCUGV9fF5on9RnsZTCe2OYHMqJbteWz-a7VfWgD5ojPR2EfTLRaiyk1eyJ-f_CP4CjP23yg |
CitedBy_id | crossref_primary_10_3390_ncrna4040026 crossref_primary_10_1007_s10528_024_10988_y crossref_primary_10_1111_cas_14509 crossref_primary_10_3389_fimmu_2023_1143980 crossref_primary_10_1016_j_bcp_2020_114351 crossref_primary_10_1016_j_ncrna_2024_01_013 crossref_primary_10_26508_lsa_202101261 crossref_primary_10_3390_jcm8050725 crossref_primary_10_1002_art_42946 crossref_primary_10_1016_j_bbadis_2024_167456 crossref_primary_10_12688_f1000research_150115_1 crossref_primary_10_1038_s41467_018_07538_7 crossref_primary_10_1038_s41580_018_0080_4 crossref_primary_10_1556_2060_2022_00163 crossref_primary_10_1016_j_canlet_2024_217153 crossref_primary_10_1016_j_molmed_2019_05_011 crossref_primary_10_3892_mmr_2018_8817 crossref_primary_10_1038_s41416_020_01177_w crossref_primary_10_1038_s41374_018_0065_0 crossref_primary_10_3390_cancers10020052 |
Cites_doi | 10.1186/bcr2235 10.1016/j.cell.2007.05.022 10.1016/j.bbrc.2013.05.101 10.1016/j.ccr.2009.03.017 10.1016/j.febslet.2008.12.043 10.1038/nature12986 10.3390/jcm5020017 10.1186/s12943-016-0491-9 10.1038/msb.2011.14 10.1016/j.cell.2008.07.001 10.1016/j.ccr.2014.03.010 10.1016/j.ajpath.2014.04.011 10.1038/nature08975 10.1091/mbc.e04-08-0658 10.1186/s12943-016-0502-x 10.1038/ncomms8743 10.1093/nar/gkl725 10.4161/15592294.2014.971608 10.1002/pros.22970 10.1007/s00432-012-1363-3 10.3390/cancers5020334 10.1007/s12094-016-1572-3 10.1074/jbc.M116.750950 10.1007/s12094-012-0966-0 10.1038/embor.2010.117 10.1128/jb.122.3.855-865.1975 10.1158/0008-5472.CAN-13-1568 10.1007/s13277-014-2636-z 10.1038/nature15748 10.1158/0008-5472.CAN-15-2263 10.1038/nature11993 10.1101/gad.455708 10.1158/1078-0432.CCR-13-1455 10.1038/ncb2029 10.3892/or.2014.3186 10.1038/srep08057 10.1093/nar/gkp787 10.1371/journal.pgen.1006024 10.1016/j.suronc.2013.07.001 10.1038/nature02006 10.1038/ncb1998 10.1172/JCI39104 10.1038/ncb1722 10.1016/j.devcel.2012.08.009 10.1038/onc.2011.656 10.1261/rna.1738409 10.1016/j.cell.2016.05.046 10.1080/15384101.2015.1120925 10.1073/pnas.1420955112 10.1158/1535-7163.MCT-12-1007 10.1158/1078-0432.CCR-16-2541 10.1038/onc.2012.58 10.1038/srep11924 10.1016/j.cell.2014.08.011 10.1016/j.tibs.2016.05.004 10.1016/j.cell.2016.06.028 10.1016/j.molcel.2011.02.003 10.1016/j.cell.2009.01.002 10.1101/gad.1837609 10.18632/oncotarget.11808 10.1038/ncb3513 10.1128/MCB.00136-14 10.1371/journal.pone.0177939 10.18632/oncotarget.1875 10.1155/2015/320214 10.1038/nsmb.2679 10.1186/s13045-016-0370-2 10.18632/oncotarget.3457 10.1002/dvdy.24506 10.1002/path.4549 10.1038/nrc1877 10.1186/s13578-015-0047-5 10.1074/jbc.C800074200 10.1016/j.cell.2009.11.007 10.1074/jbc.M112.443655 10.1016/j.canlet.2013.06.013 10.1038/onc.2013.89 10.1074/jbc.M114.610915 10.1016/j.csbj.2016.05.004 10.1038/nrc3447 10.1038/sj.onc.1206928 10.1038/nature16064 10.1091/mbc.e11-02-0103 10.7554/eLife.02907 10.1158/0008-5472.CAN-14-2931 10.1038/oncsis.2016.83 10.1038/35000025 10.1016/j.cell.2015.02.014 10.18632/oncotarget.2476 10.1038/nrm3758 10.1371/journal.pone.0052624 10.3892/or.2016.4791 10.1038/35000034 |
ContentType | Journal Article |
Copyright | 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2017 by the authors. 2017 |
Copyright_xml | – notice: 2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2017 by the authors. 2017 |
DBID | AAYXX CITATION NPM 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/cancers9070075 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Biological Science Collection Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 2072-6694 |
ExternalDocumentID | PMC5532611 28671581 10_3390_cancers9070075 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA154663 – fundername: NIGMS NIH HHS grantid: P20 GM103499 |
GroupedDBID | --- 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV ADRAZ AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GUQSH GX1 HCIFZ HYE IPNFZ KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RIG RPM TUS 3V. GROUPED_DOAJ NPM 7T5 7TO 7XB 8FK H94 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c418t-1a67b69bc577541a7602162cc98e6bf920f36f3e14985855d63aad1757885f8c3 |
IEDL.DBID | BENPR |
ISSN | 2072-6694 |
IngestDate | Thu Aug 21 18:11:30 EDT 2025 Thu Sep 04 21:33:47 EDT 2025 Fri Jul 25 12:01:51 EDT 2025 Thu Jan 02 23:10:29 EST 2025 Tue Jul 01 01:51:30 EDT 2025 Thu Apr 24 23:02:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | tumor progression non-coding RNA tRNA metastasis post-transcriptional regulation TGF-β epithelial-mesenchymal transition |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-1a67b69bc577541a7602162cc98e6bf920f36f3e14985855d63aad1757885f8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2108396220?pq-origsite=%requestingapplication% |
PMID | 28671581 |
PQID | 2108396220 |
PQPubID | 2032421 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5532611 proquest_miscellaneous_1915559535 proquest_journals_2108396220 pubmed_primary_28671581 crossref_citationtrail_10_3390_cancers9070075 crossref_primary_10_3390_cancers9070075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Cancers |
PublicationTitleAlternate | Cancers (Basel) |
PublicationYear | 2017 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Goodarzi (ref_80) 2016; 165 Bedi (ref_26) 2014; 5 Shi (ref_48) 2015; 6 Gupta (ref_55) 2010; 464 Hajjari (ref_60) 2014; 35 Shi (ref_50) 2013; 339 Zhang (ref_16) 2013; 139 Bartel (ref_33) 2009; 136 Liu (ref_41) 2013; 32 Ng (ref_71) 2016; 15 Gomes (ref_81) 2009; 37 Brabletz (ref_37) 2010; 11 ref_96 Terashima (ref_63) 2016; 292 Goodenbour (ref_79) 2006; 34 ref_17 Nakagawa (ref_58) 2013; 436 Conn (ref_70) 2015; 160 Evdokimova (ref_28) 2009; 15 Zhuang (ref_54) 2015; 5 Nieto (ref_1) 2016; 166 Ji (ref_77) 2014; 3 Londin (ref_34) 2015; 112 Su (ref_76) 2014; 33 Gingold (ref_84) 2011; 7 Cardenas (ref_23) 2014; 9 Hansen (ref_66) 2013; 73 Iguchi (ref_46) 2015; 35 Tay (ref_43) 2014; 505 Tang (ref_94) 2015; 5 ref_69 Ding (ref_39) 2013; 288 Korpal (ref_36) 2008; 283 Rinn (ref_57) 2007; 129 Reiner (ref_65) 2015; 5 Hirata (ref_52) 2015; 75 Bourcy (ref_13) 2016; 76 Li (ref_67) 2015; 5 Klochendler (ref_88) 2012; 23 Hansen (ref_68) 2013; 495 Meseure (ref_42) 2015; 2015 Gregory (ref_35) 2008; 10 Gingold (ref_85) 2014; 158 Schedin (ref_9) 2009; 11 Cole (ref_89) 2009; 15 Batlle (ref_19) 2000; 2 Chaudhury (ref_29) 2010; 12 Ke (ref_47) 2017; 19 Maziveyi (ref_24) 2016; 15 Gregory (ref_38) 2011; 22 Ji (ref_51) 2003; 22 Ruijtenberg (ref_86) 2016; 15 Lee (ref_90) 2009; 23 ref_32 Rapisuwon (ref_75) 2016; 14 Davidovich (ref_56) 2013; 20 Grelet (ref_31) 2015; 237 Wellner (ref_40) 2009; 11 Kumar (ref_87) 2012; 31 Cano (ref_20) 2000; 2 Yuan (ref_44) 2014; 25 Richards (ref_61) 2015; 290 Fan (ref_49) 2014; 20 Derynck (ref_14) 2003; 425 Xu (ref_45) 2016; 36 Kumar (ref_93) 2016; 41 Xiang (ref_21) 2017; 6 Thiery (ref_2) 2009; 139 Roche (ref_25) 2013; 5 Wu (ref_59) 2014; 32 Hua (ref_95) 2016; 7 Huang (ref_73) 2013; 15 Geslain (ref_83) 2014; 2 Hardin (ref_18) 2014; 184 Valcourt (ref_15) 2005; 16 Berx (ref_27) 2013; 13 Kalluri (ref_7) 2009; 119 ref_82 Beltran (ref_53) 2008; 22 Hashim (ref_72) 2014; 5 Dong (ref_64) 2017; 10 Krebs (ref_5) 2017; 19 Mondal (ref_62) 2015; 6 Waldron (ref_78) 1975; 122 Kalluri (ref_10) 2006; 6 Zhang (ref_74) 2013; 22 (ref_12) 2008; 134 Hussey (ref_30) 2011; 41 Fischer (ref_4) 2015; 527 Zheng (ref_3) 2015; 527 Yao (ref_22) 2015; 75 ref_8 Saikia (ref_91) 2014; 34 ref_6 Lamouille (ref_11) 2014; 15 Fu (ref_92) 2009; 583 22286766 - Oncogene. 2012 Nov 22;31(47):4898-911 14534577 - Nature. 2003 Oct 9;425(6958):577-84 17604720 - Cell. 2007 Jun 29;129(7):1311-23 24946010 - Am J Pathol. 2014 Aug;184(8):2342-54 19487818 - J Clin Invest. 2009 Jun;119(6):1420-8 19933153 - Genes Dev. 2009 Nov 15;23(22):2639-49 25973291 - Am J Cancer Res. 2015 Jan 15;5(2):472-80 25053741 - Elife. 2014 Jul 22;3:e02907 19850906 - RNA. 2009 Dec;15(12):2147-60 26152796 - Sci Rep. 2015 Jul 08;5:11924 24449823 - Clin Cancer Res. 2014 Mar 15;20(6):1531-41 24556840 - Nat Rev Mol Cell Biol. 2014 Mar;15(3):178-96 23344542 - Nat Rev Cancer. 2013 Feb;13(2):97-110 25600645 - Cancer Res. 2015 Apr 1;75(7):1322-31 26768585 - Mol Cancer. 2016 Jan 15;15:5 23783250 - Mol Cancer Ther. 2013 Sep;12(9):1805-15 28414315 - Nat Cell Biol. 2017 May;19(5):518-529 25605728 - J Biol Chem. 2015 Mar 13;290(11):6857-67 24840737 - Oncol Rep. 2014 Jul;32(1):395-402 12970751 - Oncogene. 2003 Sep 11;22(39):8031-41 25215487 - Cell. 2014 Sep 11;158(6):1281-92 28067907 - Oncogenesis. 2017 Jan 9;6(1):e284 28407379 - Dev Dyn. 2017 Apr 13;:null 26825227 - Cell Cycle. 2016;15(2):196-212 25470663 - Epigenetics. 2014 Nov;9(11):1461-72 21411626 - Mol Biol Cell. 2011 May 15;22(10 ):1686-98 20154680 - Nat Cell Biol. 2010 Mar;12(3):286-93 23285117 - PLoS One. 2012;7(12):e52624 23542174 - Oncogene. 2014 Mar 13;33(11):1348-58 28049499 - J Hematol Oncol. 2017 Jan 3;10 (1):2 18411277 - J Biol Chem. 2008 May 30;283(22):14910-4 19114040 - FEBS Lett. 2009 Jan 22;583(2):437-42 27368099 - Cell. 2016 Jun 30;166(1):21-45 23229900 - Clin Transl Oncol. 2013 Jul;15(7):563-8 20393566 - Nature. 2010 Apr 15;464(7291):1071-6 28545122 - PLoS One. 2017 May 17;12 (5):e0177939 25266799 - Tumour Biol. 2014 Nov;35(11):10645-63 24840099 - Oncotarget. 2014 Apr 30;5(8):2016-29 25750289 - Anticancer Res. 2015 Mar;35(3):1385-8 26560033 - Nature. 2015 Nov 26;527(7579):472-6 21487400 - Mol Syst Biol. 2011 Apr 12;7:481 24429633 - Nature. 2014 Jan 16;505(7483):344-52 16572188 - Nat Rev Cancer. 2006 May;6(5):392-401 19411069 - Cancer Cell. 2009 May 5;15(5):402-15 18347095 - Genes Dev. 2008 Mar 15;22(6):756-69 27176634 - Oncol Rep. 2016 Jul;36(1):10-22 23743197 - Biochem Biophys Res Commun. 2013 Jun 28;436(2):319-24 24752898 - Mol Cell Biol. 2014 Jul;34(13):2450-63 21329880 - Mol Cell. 2011 Feb 18;41(4):419-31 20706219 - EMBO Rep. 2010 Sep;11(9):670-7 25904364 - J Pathol. 2015 Sep;237(1):25-37 26828526 - J Clin Med. 2016 Jan 27;5(2):null 27358717 - Comput Struct Biotechnol J. 2016 Jun 01;14:211-22 25871474 - Oncotarget. 2015 May 10;6(13):11652-63 23504025 - J Cancer Res Clin Oncol. 2013 Jun;139(6):1033-42 24077223 - Nat Struct Mol Biol. 2013 Nov;20(11):1250-7 26205790 - Nat Commun. 2015 Jul 24;6:7743 19945376 - Cell. 2009 Nov 25;139(5):871-90 22370643 - Oncogene. 2013 Jan 17;32(3):296-306 24014594 - Cancer Res. 2013 Sep 15;73(18):5609-12 27221703 - Cancer Res. 2016 Jul 15;76(14 ):4270-82 23992744 - Surg Oncol. 2013 Dec;22(4):217-23 1097403 - J Bacteriol. 1975 Jun;122(3):855-65 27852821 - J Biol Chem. 2017 Jan 6;292(1):82-99 24216980 - Cancers (Basel). 2013 Apr 03;5(2):334-56 17088292 - Nucleic Acids Res. 2006;34(21):6137-46 15689496 - Mol Biol Cell. 2005 Apr;16(4):1987-2002 10655587 - Nat Cell Biol. 2000 Feb;2(2):84-9 27259150 - Cell. 2016 Jun 2;165(6):1416-1427 26413265 - Cell Biosci. 2015 Sep 25;5:56 28174233 - Clin Cancer Res. 2017 Jul 15;23 (14 ):3918-3928 19344495 - Breast Cancer Res. 2009;11(2):102 25313140 - Oncotarget. 2014 Oct 30;5(20):9901-10 19167326 - Cell. 2009 Jan 23;136(2):215-33 26779404 - Translation (Austin). 2014 Apr 09;2(1):e28586 24768205 - Cancer Cell. 2014 May 12;25(5):666-81 10655586 - Nat Cell Biol. 2000 Feb;2(2):76-83 19783824 - Nucleic Acids Res. 2009 Nov;37(21):7268-80 27602775 - Oncotarget. 2016 Oct 4;7(40):66077-66086 26448935 - Biomed Res Int. 2015;2015:320214 25624062 - Sci Rep. 2015 Jan 27;5:8057 27263052 - Trends Biochem Sci. 2016 Aug;41(8):679-89 23446346 - Nature. 2013 Mar 21;495(7441):384-8 25768908 - Cell. 2015 Mar 12;160(6):1125-34 25728398 - Prostate. 2015 Jun;75(8):872-82 18662538 - Cell. 2008 Jul 25;134(2):215-30 23000141 - Dev Cell. 2012 Oct 16;23(4):681-90 23447531 - J Biol Chem. 2013 Apr 12;288(15):10241-53 26905733 - Mol Cancer. 2016 Feb 24;15:18 25713380 - Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):E1106-15 23791884 - Cancer Lett. 2013 Oct 10;339(2):159-66 27166679 - PLoS Genet. 2016 May 11;12 (5):e1006024 27878433 - Clin Transl Oncol. 2017 May;19(5):599-605 18376396 - Nat Cell Biol. 2008 May;10 (5):593-601 26560028 - Nature. 2015 Nov 26;527(7579):525-530 19935649 - Nat Cell Biol. 2009 Dec;11(12 ):1487-95 |
References_xml | – volume: 11 start-page: 102 year: 2009 ident: ref_9 article-title: Breaking down barriers: the importance of the stromal microenvironment in acquiring invasiveness in young women’s breast cancer publication-title: Breast Cancer Res. BCR doi: 10.1186/bcr2235 – volume: 129 start-page: 1311 year: 2007 ident: ref_57 article-title: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs publication-title: Cell doi: 10.1016/j.cell.2007.05.022 – volume: 436 start-page: 319 year: 2013 ident: ref_58 article-title: Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2013.05.101 – volume: 15 start-page: 402 year: 2009 ident: ref_28 article-title: Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.03.017 – volume: 583 start-page: 437 year: 2009 ident: ref_92 article-title: Stress induces tRNA cleavage by angiogenin in mammalian cells publication-title: FEBS Lett. doi: 10.1016/j.febslet.2008.12.043 – volume: 505 start-page: 344 year: 2014 ident: ref_43 article-title: The multilayered complexity of ceRNA crosstalk and competition publication-title: Nature doi: 10.1038/nature12986 – ident: ref_8 doi: 10.3390/jcm5020017 – volume: 15 start-page: 5 year: 2016 ident: ref_71 article-title: Piwi-interacting RNAs in cancer: Emerging functions and clinical utility publication-title: Mol. Cancer doi: 10.1186/s12943-016-0491-9 – volume: 7 start-page: 481 year: 2011 ident: ref_84 article-title: Determinants of translation efficiency and accuracy publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2011.14 – volume: 134 start-page: 215 year: 2008 ident: ref_12 article-title: TGFβ in Cancer publication-title: Cell doi: 10.1016/j.cell.2008.07.001 – volume: 25 start-page: 666 year: 2014 ident: ref_44 article-title: A Long Noncoding RNA Activated by TGF-β Promotes the Invasion-Metastasis Cascade in Hepatocellular Carcinoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.03.010 – volume: 184 start-page: 2342 year: 2014 ident: ref_18 article-title: The Roles of the Epithelial-Mesenchymal Transition Marker PRRX1 and miR-146b-5p in Papillary Thyroid Carcinoma Progression publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2014.04.011 – volume: 464 start-page: 1071 year: 2010 ident: ref_55 article-title: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis publication-title: Nature doi: 10.1038/nature08975 – volume: 16 start-page: 1987 year: 2005 ident: ref_15 article-title: TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-08-0658 – volume: 5 start-page: 472 year: 2015 ident: ref_67 article-title: Circular RNAs in cancer: novel insights into origins, properties, functions and implications publication-title: Am. J. Cancer Res. – volume: 15 start-page: 18 year: 2016 ident: ref_24 article-title: Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications publication-title: Mol. Cancer doi: 10.1186/s12943-016-0502-x – volume: 6 start-page: 7743 year: 2015 ident: ref_62 article-title: MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures publication-title: Nat. Commun. doi: 10.1038/ncomms8743 – volume: 34 start-page: 6137 year: 2006 ident: ref_79 article-title: Diversity of tRNA genes in eukaryotes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl725 – volume: 9 start-page: 1461 year: 2014 ident: ref_23 article-title: TGF-β induces global changes in DNA methylation during the epithelial-to-mesenchymal transition in ovarian cancer cells publication-title: Epigenetics doi: 10.4161/15592294.2014.971608 – volume: 75 start-page: 872 year: 2015 ident: ref_22 article-title: Elf5 inhibits TGF-β-driven epithelial-mesenchymal transition in prostate cancer by repressing SMAD3 activation publication-title: Prostate doi: 10.1002/pros.22970 – volume: 139 start-page: 1033 year: 2013 ident: ref_16 article-title: KLF8 involves in TGF-beta-induced EMT and promotes invasion and migration in gastric cancer cells publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-012-1363-3 – volume: 5 start-page: 334 year: 2013 ident: ref_25 article-title: Global Decrease of Histone H3K27 Acetylation in ZEB1-Induced Epithelial to Mesenchymal Transition in Lung Cancer Cells publication-title: Cancers doi: 10.3390/cancers5020334 – volume: 19 start-page: 599 year: 2017 ident: ref_47 article-title: High expression of long non-coding RNA ATB indicates a poor prognosis and regulates cell proliferation and metastasis in non-small cell lung cancer publication-title: Clin. Transl. Oncol. doi: 10.1007/s12094-016-1572-3 – volume: 292 start-page: 82 year: 2016 ident: ref_63 article-title: MEG3 long noncoding RNA contributes to the epigenetic regulation of epithelial-mesenchymal transition in lung cancer cell lines publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.750950 – volume: 15 start-page: 563 year: 2013 ident: ref_73 article-title: Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer publication-title: Clin. Transl. Oncol. doi: 10.1007/s12094-012-0966-0 – volume: 11 start-page: 670 year: 2010 ident: ref_37 article-title: The ZEB/miR-200 feedback loop—A motor of cellular plasticity in development and cancer? publication-title: EMBO Rep. doi: 10.1038/embor.2010.117 – volume: 122 start-page: 855 year: 1975 ident: ref_78 article-title: Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast publication-title: J. Bacteriol. doi: 10.1128/jb.122.3.855-865.1975 – volume: 73 start-page: 5609 year: 2013 ident: ref_66 article-title: Circular RNA and miR-7 in cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1568 – volume: 35 start-page: 10645 year: 2014 ident: ref_60 article-title: Molecular function and regulation of long non-coding RNAs: paradigms with potential roles in cancer publication-title: Tumour Biol. doi: 10.1007/s13277-014-2636-z – volume: 527 start-page: 472 year: 2015 ident: ref_4 article-title: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance publication-title: Nature doi: 10.1038/nature15748 – volume: 76 start-page: 4270 year: 2016 ident: ref_13 article-title: Tissue Factor Induced by Epithelial-Mesenchymal Transition Triggers a Procoagulant State That Drives Metastasis of Circulating Tumor Cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-2263 – volume: 495 start-page: 384 year: 2013 ident: ref_68 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – volume: 22 start-page: 756 year: 2008 ident: ref_53 article-title: A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition publication-title: Genes Dev. doi: 10.1101/gad.455708 – volume: 20 start-page: 1531 year: 2014 ident: ref_49 article-title: TGF-β-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-1455 – volume: 12 start-page: 286 year: 2010 ident: ref_29 article-title: TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI publication-title: Nat. Cell Biol. doi: 10.1038/ncb2029 – volume: 32 start-page: 395 year: 2014 ident: ref_59 article-title: Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer publication-title: Oncol. Rep. doi: 10.3892/or.2014.3186 – volume: 5 start-page: 8057 year: 2015 ident: ref_65 article-title: Correlation of circular RNA abundance with proliferation—Exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues publication-title: Sci. Rep. doi: 10.1038/srep08057 – volume: 37 start-page: 7268 year: 2009 ident: ref_81 article-title: tRNA over-expression in breast cancer and functional consequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp787 – ident: ref_82 doi: 10.1371/journal.pgen.1006024 – volume: 22 start-page: 217 year: 2013 ident: ref_74 article-title: The expression of stem cell protein Piwil2 and piR-932 in breast cancer publication-title: Surg. Oncol. doi: 10.1016/j.suronc.2013.07.001 – volume: 425 start-page: 577 year: 2003 ident: ref_14 article-title: Smad-dependent and Smad-independent pathways in TGF-β family signalling publication-title: Nature doi: 10.1038/nature02006 – volume: 11 start-page: 1487 year: 2009 ident: ref_40 article-title: The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs publication-title: Nat. Cell Biol. doi: 10.1038/ncb1998 – volume: 119 start-page: 1420 year: 2009 ident: ref_7 article-title: The basics of epithelial-mesenchymal transition publication-title: J. Clin. Investig. doi: 10.1172/JCI39104 – volume: 10 start-page: 593 year: 2008 ident: ref_35 article-title: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1722 – volume: 23 start-page: 681 year: 2012 ident: ref_88 article-title: A Transgenic Mouse Marking Live Replicating Cells Reveals In Vivo Transcriptional Program of Proliferation publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.08.009 – volume: 31 start-page: 4898 year: 2012 ident: ref_87 article-title: Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation publication-title: Oncogene doi: 10.1038/onc.2011.656 – volume: 15 start-page: 2147 year: 2009 ident: ref_89 article-title: Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs publication-title: RNA NY doi: 10.1261/rna.1738409 – volume: 165 start-page: 1416 year: 2016 ident: ref_80 article-title: Modulated Expression of Specific tRNAs Drives Gene Expression and Cancer Progression publication-title: Cell doi: 10.1016/j.cell.2016.05.046 – volume: 15 start-page: 196 year: 2016 ident: ref_86 article-title: Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression publication-title: Cell Cycle doi: 10.1080/15384101.2015.1120925 – volume: 112 start-page: E1106 year: 2015 ident: ref_34 article-title: Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1420955112 – ident: ref_17 doi: 10.1158/1535-7163.MCT-12-1007 – ident: ref_69 doi: 10.1158/1078-0432.CCR-16-2541 – volume: 32 start-page: 296 year: 2013 ident: ref_41 article-title: MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms publication-title: Oncogene doi: 10.1038/onc.2012.58 – volume: 5 start-page: 11924 year: 2015 ident: ref_54 article-title: TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT publication-title: Sci. Rep. doi: 10.1038/srep11924 – volume: 158 start-page: 1281 year: 2014 ident: ref_85 article-title: A dual program for translation regulation in cellular proliferation and differentiation publication-title: Cell doi: 10.1016/j.cell.2014.08.011 – volume: 41 start-page: 679 year: 2016 ident: ref_93 article-title: Biogenesis and Function of Transfer RNA-Related Fragments (tRFs) publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2016.05.004 – volume: 166 start-page: 21 year: 2016 ident: ref_1 article-title: EMT: 2016 publication-title: Cell doi: 10.1016/j.cell.2016.06.028 – volume: 41 start-page: 419 year: 2011 ident: ref_30 article-title: Identification of an mRNP Complex Regulating Tumorigenesis at the Translational Elongation Step publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.02.003 – volume: 136 start-page: 215 year: 2009 ident: ref_33 article-title: MicroRNAs: Target recognition and regulatory functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 23 start-page: 2639 year: 2009 ident: ref_90 article-title: A novel class of small RNAs: tRNA-derived RNA fragments (tRFs) publication-title: Genes Dev. doi: 10.1101/gad.1837609 – volume: 7 start-page: 66077 year: 2016 ident: ref_95 article-title: Epithelialization of mouse ovarian tumor cells originating in the fallopian tube stroma publication-title: Oncotarget doi: 10.18632/oncotarget.11808 – volume: 19 start-page: 518 year: 2017 ident: ref_5 article-title: The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer publication-title: Nat. Cell Biol. doi: 10.1038/ncb3513 – volume: 2 start-page: e28586 year: 2014 ident: ref_83 article-title: Regulation of translation dynamic and neoplastic conversion by tRNA and their pieces publication-title: Transl. Austin. – volume: 34 start-page: 2450 year: 2014 ident: ref_91 article-title: Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00136-14 – ident: ref_96 doi: 10.1371/journal.pone.0177939 – volume: 5 start-page: 2016 year: 2014 ident: ref_26 article-title: Epigenetic plasticity: A central regulator of epithelial-to-mesenchymal transition in cancer publication-title: Oncotarget doi: 10.18632/oncotarget.1875 – volume: 2015 start-page: e320214 year: 2015 ident: ref_42 article-title: Long Noncoding RNAs as New Architects in Cancer Epigenetics, Prognostic Biomarkers, and Potential Therapeutic Targets publication-title: BioMed Res. Int. doi: 10.1155/2015/320214 – volume: 20 start-page: 1250 year: 2013 ident: ref_56 article-title: Promiscuous RNA binding by Polycomb Repressive Complex 2 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2679 – volume: 10 start-page: 2 year: 2017 ident: ref_64 article-title: Circular RNAs in cancer: an emerging key player publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-016-0370-2 – volume: 6 start-page: 11652 year: 2015 ident: ref_48 article-title: LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer publication-title: Oncotarget doi: 10.18632/oncotarget.3457 – ident: ref_6 doi: 10.1002/dvdy.24506 – volume: 237 start-page: 25 year: 2015 ident: ref_31 article-title: The human NANOS3 gene contributes to lung tumour invasion by inducing epithelial-mesenchymal transition publication-title: J. Pathol. doi: 10.1002/path.4549 – volume: 6 start-page: 392 year: 2006 ident: ref_10 article-title: Fibroblasts in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1877 – volume: 5 start-page: 56 year: 2015 ident: ref_94 article-title: MicroRNA-720 promotes in vitro cell migration by targeting Rab35 expression in cervical cancer cells publication-title: Cell Biosci. doi: 10.1186/s13578-015-0047-5 – volume: 283 start-page: 14910 year: 2008 ident: ref_36 article-title: The miR-200 Family Inhibits Epithelial-Mesenchymal Transition and Cancer Cell Migration by Direct Targeting of E-cadherin Transcriptional Repressors ZEB1 and ZEB2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C800074200 – volume: 139 start-page: 871 year: 2009 ident: ref_2 article-title: Epithelial-mesenchymal transitions in development and disease publication-title: Cell doi: 10.1016/j.cell.2009.11.007 – volume: 288 start-page: 10241 year: 2013 ident: ref_39 article-title: Signaling between Transforming Growth Factor β (TGF-β) and Transcription Factor SNAI2 Represses Expression of MicroRNA miR-203 to Promote Epithelial-Mesenchymal Transition and Tumor Metastasis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.443655 – volume: 339 start-page: 159 year: 2013 ident: ref_50 article-title: Long non-coding RNAs: A new frontier in the study of human diseases publication-title: Cancer Lett. doi: 10.1016/j.canlet.2013.06.013 – volume: 33 start-page: 1348 year: 2014 ident: ref_76 article-title: Elevated snoRNA biogenesis is essential in breast cancer publication-title: Oncogene doi: 10.1038/onc.2013.89 – volume: 290 start-page: 6857 year: 2015 ident: ref_61 article-title: Long non-coding RNAs (LncRNA) regulated by transforming growth factor (TGF) β: LncRNA-hit-mediated TGFβ-induced epithelial to mesenchymal transition in mammary epithelia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.610915 – volume: 14 start-page: 211 year: 2016 ident: ref_75 article-title: Circulating biomarkers to monitor cancer progression and treatment publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2016.05.004 – volume: 13 start-page: 97 year: 2013 ident: ref_27 article-title: Regulatory networks defining EMT during cancer initiation and progression publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3447 – volume: 35 start-page: 1385 year: 2015 ident: ref_46 article-title: A long noncoding RNA, lncRNA-ATB, is involved in the progression and prognosis of colorectal cancer publication-title: Anticancer Res. – volume: 22 start-page: 8031 year: 2003 ident: ref_51 article-title: MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer publication-title: Oncogene doi: 10.1038/sj.onc.1206928 – volume: 527 start-page: 525 year: 2015 ident: ref_3 article-title: Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer publication-title: Nature doi: 10.1038/nature16064 – volume: 22 start-page: 1686 year: 2011 ident: ref_38 article-title: An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-02-0103 – volume: 3 start-page: e02907 year: 2014 ident: ref_77 article-title: LARP7 suppresses P-TEFb activity to inhibit breast cancer progression and metastasis publication-title: Elife doi: 10.7554/eLife.02907 – volume: 75 start-page: 1322 year: 2015 ident: ref_52 article-title: Long Noncoding RNA MALAT1 Promotes Aggressive Renal Cell Carcinoma through Ezh2 and Interacts with miR-205 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-2931 – volume: 6 start-page: e284 year: 2017 ident: ref_21 article-title: Grhl2 reduces invasion and migration through inhibition of TGFβ-induced EMT in gastric cancer publication-title: Oncogenesis doi: 10.1038/oncsis.2016.83 – volume: 2 start-page: 76 year: 2000 ident: ref_20 article-title: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression publication-title: Nat. Cell Biol. doi: 10.1038/35000025 – volume: 160 start-page: 1125 year: 2015 ident: ref_70 article-title: The RNA Binding Protein Quaking Regulates Formation of circRNAs publication-title: Cell doi: 10.1016/j.cell.2015.02.014 – volume: 5 start-page: 9901 year: 2014 ident: ref_72 article-title: RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer publication-title: Oncotarget doi: 10.18632/oncotarget.2476 – volume: 15 start-page: 178 year: 2014 ident: ref_11 article-title: Molecular mechanisms of epithelial–mesenchymal transition publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3758 – ident: ref_32 doi: 10.1371/journal.pone.0052624 – volume: 36 start-page: 10 year: 2016 ident: ref_45 article-title: Long non-coding RNA ATB promotes growth and epithelial-mesenchymal transition and predicts poor prognosis in human prostate carcinoma publication-title: Oncol. Rep. doi: 10.3892/or.2016.4791 – volume: 2 start-page: 84 year: 2000 ident: ref_19 article-title: The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells publication-title: Nat. Cell Biol. doi: 10.1038/35000034 – reference: 18347095 - Genes Dev. 2008 Mar 15;22(6):756-69 – reference: 21411626 - Mol Biol Cell. 2011 May 15;22(10 ):1686-98 – reference: 26825227 - Cell Cycle. 2016;15(2):196-212 – reference: 28407379 - Dev Dyn. 2017 Apr 13;:null – reference: 27602775 - Oncotarget. 2016 Oct 4;7(40):66077-66086 – reference: 25600645 - Cancer Res. 2015 Apr 1;75(7):1322-31 – reference: 27259150 - Cell. 2016 Jun 2;165(6):1416-1427 – reference: 26205790 - Nat Commun. 2015 Jul 24;6:7743 – reference: 23447531 - J Biol Chem. 2013 Apr 12;288(15):10241-53 – reference: 27852821 - J Biol Chem. 2017 Jan 6;292(1):82-99 – reference: 23000141 - Dev Cell. 2012 Oct 16;23(4):681-90 – reference: 20393566 - Nature. 2010 Apr 15;464(7291):1071-6 – reference: 25904364 - J Pathol. 2015 Sep;237(1):25-37 – reference: 25470663 - Epigenetics. 2014 Nov;9(11):1461-72 – reference: 24752898 - Mol Cell Biol. 2014 Jul;34(13):2450-63 – reference: 25728398 - Prostate. 2015 Jun;75(8):872-82 – reference: 10655587 - Nat Cell Biol. 2000 Feb;2(2):84-9 – reference: 19783824 - Nucleic Acids Res. 2009 Nov;37(21):7268-80 – reference: 25871474 - Oncotarget. 2015 May 10;6(13):11652-63 – reference: 25750289 - Anticancer Res. 2015 Mar;35(3):1385-8 – reference: 27368099 - Cell. 2016 Jun 30;166(1):21-45 – reference: 26779404 - Translation (Austin). 2014 Apr 09;2(1):e28586 – reference: 28414315 - Nat Cell Biol. 2017 May;19(5):518-529 – reference: 26152796 - Sci Rep. 2015 Jul 08;5:11924 – reference: 27176634 - Oncol Rep. 2016 Jul;36(1):10-22 – reference: 17088292 - Nucleic Acids Res. 2006;34(21):6137-46 – reference: 23446346 - Nature. 2013 Mar 21;495(7441):384-8 – reference: 26413265 - Cell Biosci. 2015 Sep 25;5:56 – reference: 24768205 - Cancer Cell. 2014 May 12;25(5):666-81 – reference: 19850906 - RNA. 2009 Dec;15(12):2147-60 – reference: 17604720 - Cell. 2007 Jun 29;129(7):1311-23 – reference: 28049499 - J Hematol Oncol. 2017 Jan 3;10 (1):2 – reference: 20706219 - EMBO Rep. 2010 Sep;11(9):670-7 – reference: 27358717 - Comput Struct Biotechnol J. 2016 Jun 01;14:211-22 – reference: 19487818 - J Clin Invest. 2009 Jun;119(6):1420-8 – reference: 25713380 - Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):E1106-15 – reference: 20154680 - Nat Cell Biol. 2010 Mar;12(3):286-93 – reference: 28545122 - PLoS One. 2017 May 17;12 (5):e0177939 – reference: 26768585 - Mol Cancer. 2016 Jan 15;15:5 – reference: 23783250 - Mol Cancer Ther. 2013 Sep;12(9):1805-15 – reference: 23504025 - J Cancer Res Clin Oncol. 2013 Jun;139(6):1033-42 – reference: 24556840 - Nat Rev Mol Cell Biol. 2014 Mar;15(3):178-96 – reference: 25973291 - Am J Cancer Res. 2015 Jan 15;5(2):472-80 – reference: 18376396 - Nat Cell Biol. 2008 May;10 (5):593-601 – reference: 23344542 - Nat Rev Cancer. 2013 Feb;13(2):97-110 – reference: 25605728 - J Biol Chem. 2015 Mar 13;290(11):6857-67 – reference: 24946010 - Am J Pathol. 2014 Aug;184(8):2342-54 – reference: 19167326 - Cell. 2009 Jan 23;136(2):215-33 – reference: 22370643 - Oncogene. 2013 Jan 17;32(3):296-306 – reference: 12970751 - Oncogene. 2003 Sep 11;22(39):8031-41 – reference: 24429633 - Nature. 2014 Jan 16;505(7483):344-52 – reference: 23542174 - Oncogene. 2014 Mar 13;33(11):1348-58 – reference: 26828526 - J Clin Med. 2016 Jan 27;5(2):null – reference: 1097403 - J Bacteriol. 1975 Jun;122(3):855-65 – reference: 26560033 - Nature. 2015 Nov 26;527(7579):472-6 – reference: 28174233 - Clin Cancer Res. 2017 Jul 15;23 (14 ):3918-3928 – reference: 27878433 - Clin Transl Oncol. 2017 May;19(5):599-605 – reference: 25768908 - Cell. 2015 Mar 12;160(6):1125-34 – reference: 19945376 - Cell. 2009 Nov 25;139(5):871-90 – reference: 24840737 - Oncol Rep. 2014 Jul;32(1):395-402 – reference: 25215487 - Cell. 2014 Sep 11;158(6):1281-92 – reference: 26905733 - Mol Cancer. 2016 Feb 24;15:18 – reference: 19344495 - Breast Cancer Res. 2009;11(2):102 – reference: 22286766 - Oncogene. 2012 Nov 22;31(47):4898-911 – reference: 25624062 - Sci Rep. 2015 Jan 27;5:8057 – reference: 23743197 - Biochem Biophys Res Commun. 2013 Jun 28;436(2):319-24 – reference: 23791884 - Cancer Lett. 2013 Oct 10;339(2):159-66 – reference: 26560028 - Nature. 2015 Nov 26;527(7579):525-530 – reference: 25266799 - Tumour Biol. 2014 Nov;35(11):10645-63 – reference: 14534577 - Nature. 2003 Oct 9;425(6958):577-84 – reference: 25053741 - Elife. 2014 Jul 22;3:e02907 – reference: 25313140 - Oncotarget. 2014 Oct 30;5(20):9901-10 – reference: 24840099 - Oncotarget. 2014 Apr 30;5(8):2016-29 – reference: 19935649 - Nat Cell Biol. 2009 Dec;11(12 ):1487-95 – reference: 16572188 - Nat Rev Cancer. 2006 May;6(5):392-401 – reference: 15689496 - Mol Biol Cell. 2005 Apr;16(4):1987-2002 – reference: 24014594 - Cancer Res. 2013 Sep 15;73(18):5609-12 – reference: 18662538 - Cell. 2008 Jul 25;134(2):215-30 – reference: 24449823 - Clin Cancer Res. 2014 Mar 15;20(6):1531-41 – reference: 24216980 - Cancers (Basel). 2013 Apr 03;5(2):334-56 – reference: 27221703 - Cancer Res. 2016 Jul 15;76(14 ):4270-82 – reference: 23992744 - Surg Oncol. 2013 Dec;22(4):217-23 – reference: 24077223 - Nat Struct Mol Biol. 2013 Nov;20(11):1250-7 – reference: 26448935 - Biomed Res Int. 2015;2015:320214 – reference: 18411277 - J Biol Chem. 2008 May 30;283(22):14910-4 – reference: 27263052 - Trends Biochem Sci. 2016 Aug;41(8):679-89 – reference: 23285117 - PLoS One. 2012;7(12):e52624 – reference: 23229900 - Clin Transl Oncol. 2013 Jul;15(7):563-8 – reference: 19933153 - Genes Dev. 2009 Nov 15;23(22):2639-49 – reference: 21329880 - Mol Cell. 2011 Feb 18;41(4):419-31 – reference: 27166679 - PLoS Genet. 2016 May 11;12 (5):e1006024 – reference: 19411069 - Cancer Cell. 2009 May 5;15(5):402-15 – reference: 21487400 - Mol Syst Biol. 2011 Apr 12;7:481 – reference: 19114040 - FEBS Lett. 2009 Jan 22;583(2):437-42 – reference: 28067907 - Oncogenesis. 2017 Jan 9;6(1):e284 – reference: 10655586 - Nat Cell Biol. 2000 Feb;2(2):76-83 |
SSID | ssj0000331767 |
Score | 2.2344327 |
SecondaryResourceType | review_article |
Snippet | Epithelial-mesenchymal transition (EMT) is a spatially- and temporally-regulated process involved in physiological and pathological transformations, such as... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 75 |
SubjectTerms | Biology Cancer Cell growth Cytokines Drug resistance Embryogenesis Epidermal growth factor Extracellular matrix Fibroblasts Investigations Laboratories Mesenchyme Metastases Metastasis MicroRNAs miRNA Molecular modelling Motility Non-coding RNA Post-transcription Review Roles Tumors Vascular endothelial growth factor |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED7BEGgvCAaMwkBGQuLJECexkzwgNE0rE1KraWqlvUWOY2uVuqQkrbS-8pP4Ifwm7py0UBi8xo4d-c6574sv3wG8NU6j5yjHpck0jwsVcKRgisdRidFKBNo4-jQwGquzafzlUl7-yn_qF7C9ldpRPalpM39_83X9CTf8R2KcSNk_GFqfpsU5KADehXsYlRQRsVEP9f1bOcK5VdLpNt5y225c-gts_pkz-VsQGj6Chz16ZMeduR_DHVsdwP2unuT6AB6M-pPyJ_DtfG5n9bKpFzPDLki1idWOjeuKn9QUrtjF-Lhls4pNPg_5j-985Et22JKdLugvjTm6JV5r0Yev1tc4pY9pPr2L6apkEzpfYEMMit5v_UCr67ph55Tv1Wl9PIXp8HRycsb7egvcxCJdcqFVUqisMJJk8YROFAIAFRqTpVYVLgsDFykXWSRVdJooSxVpXQpSxE-lS030DPaqurLPgekktA7JTxbJJFZapQiEbOiytCgCI4t0AHyz2rnpxcipJsY8R1JC1sl3rTOAd9v-i06G4589jzbGyzfelCOvRSCowjAYwJttM24kOh3Rla1XbS5IKV9mMsIhDjtbb6cKSQVQpmIAyY4XbDuQSPduSzW78mLdUiJAFuLF_x_rJeyHhBd8HvAR7C2blX2FaGdZvPZu_BMPTAGz priority: 102 providerName: Scholars Portal |
Title | Pleiotropic Roles of Non-Coding RNAs in TGF-β-Mediated Epithelial-Mesenchymal Transition and Their Functions in Tumor Progression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28671581 https://www.proquest.com/docview/2108396220 https://www.proquest.com/docview/1915559535 https://pubmed.ncbi.nlm.nih.gov/PMC5532611 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9swEBdry8Zeytb9S9sVDQZ7ErVsS5afSleSlkFCCCnkzciyRAOpncXJQ1_7kfpB9pl2ZyvesrG9-MEWktCd9LvTnX9HyGfjNGiOdEyYVLM4lwEDF0yyOCoArXigjcOrgeFI3tzG32Zi5i_cap9WuT0Tm4O6qAzekZ-DawJYLsMwuFh-Z1g1CqOrvoTGHjmAI1iBnh987Y_Gk-6WJYhgRJm0bI0R-PfnBhdzVcOEEC130egvE_PPTMnfoGfwihx6m5FetkJ-TZ7Z8og8b6tIPhyRF0MfH39DHscLO6_Wq2o5N3SCXE20cnRUleyqQpCik9FlTeclnV4P2I8nNmwKddiC9pf4b8YClBHe1aC5dw_3MGSDZE1SF9VlQacYVaADgMJGW5uONvfVio4xy6tl-HhLbgf96dUN81UWmIm5WjOuZZLLNDcCyfC4TiTAvgyNSZWVuUvDwEXSRRZcKYwhikJGWhccefCVcMpE78h-WZX2A6E6Ca0DlyeNRBJLLRWYPzZ0qcrzwIhc9QjbrnZmPAU5VsJYZOCKoHSyXen0yJeu_bIl3_hny9Ot8DK_Cevsl8r0yKfuM2wfjIno0labOuPIjy9SEUEX71tZd0OFyP0nFO-RZEcLugZIzb37pZzfNRTdQoBZzPnx_6d1Ql6GaCU02b-nZH-92tiPYOOs8zOvyGdk73rG4TmM1U-mGgEo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVDwuCMorUGCRQJxWtdf22j4gVEpCSpsoilKpN7Ner9VIqR3iRChXfhAHfgi_iRm_ICC49Wqv1vbOjL-ZndlvAF7qVKHmyJR7OlTcjaXFMQST3HUSRCvbUjqlrYHhSA7O3I_n3vkOfGvOwlBZZfNPLH_USa5pj_wAQxPEcimE9XbxmVPXKMquNi00KrU4MZsvGLIVb47fo3xfCdHvTY8GvO4qwLVrBytuK-nHMoy1R-RvtvIlwpwUWoeBkXEaCit1ZOoYDB0oZ-Yl0lEqsYn3PfDSQDs47zXYdelEawd23_VG40m7q2M5-IXSr9ghHSe0DjQJb1ngAhA6b6PfXy7tn5WZv0Fd_w7crn1Udlgp1V3YMdkeXK-6Vm724Mawzsffg6_juZnlq2W-mGk2IW4olqdslGf8KCdQZJPRYcFmGZt-6PMf3_mwbAxiEtZb0FmQOSo_XivQUi42l_jIEjnLIjKmsoRNKYvB-gi9pXWUE60v8yUbU1VZxShyH86uZP0fQCfLM_MImPKFSTHECh3Pd6WSAbpbRqRhEMeW9uKgC7xZ7UjXlOfUeWMeYehD0om2pdOF1-34RUX28c-R-43wotroi-iXinbhRXsbzZVyMCoz-bqIbOLjR81xcIqHlazbRwniGvQCuwv-lha0A4gKfPtONrsoKcE9D91w2378_9d6DjcH0-FpdHo8OnkCtwR5KGXl8T50Vsu1eYr-1Sp-Vis1g09XbUc_AWOnOnY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVFRcEJS_QIFFAnFaxX-7tg8IlTahpSSKolTqzazXu2qk1A5xIpQrj8SRh-CZmLGdQEBw69Vere2dmf1mdsbfALzUVqHmSMuFjhUPUulwDMEkD_wM0cp1lLZ0NNAfyJPz4MOFuNiB7-t_Yaiscr0nVht1Vmg6I-9gaIJYLj3P6dimLGJ43Hs7-8ypgxRlWtftNGoVOTOrLxi-lW9Oj1HWrzyv1x0fnfCmwwDXgRstuKtkmMo41YKI4FwVSoQ86WkdR0amNvYc60vrGwwjKH8mMukrlbnEAR8JG2kf570BuyGiYtCC3XfdwXC0OeFxfPxaGdZMkb4fOx1NgpyXuBiE1NtI-Jd7-2eV5m-w17sDtxt_lR3WCnYXdky-DzfrDparfdjrN7n5e_B1ODWTYjEvZhPNRsQTxQrLBkXOjwoCSDYaHJZskrPx-x7_8Y33qyYhJmPdGf0XMkVDwGslWs3l6gofWaFoVVDGVJ6xMWU0WA9huLKUaqLlVTFnQ6owq9lF7sP5taz_A2jlRW4eAVOhZyyGW7EvwkAqGaHrZTwbR2nqaJFGbeDr1U50Q39OXTimCYZBJJ1kWzpteL0ZP6uJP_458mAtvKTZAMrkl7q24cXmNpou5WNUboplmbjEzS9i4eMUD2tZbx7lEe-giNw2hFtasBlAtODbd_LJZUUPLgS65K77-P-v9Rz20H6Sj6eDsydwyyNnpSpCPoDWYr40T9HVWqTPGp1m8Om6zegnswU-og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pleiotropic+Roles+of+Non-Coding+RNAs+in+TGF-%CE%B2-Mediated+Epithelial-Mesenchymal+Transition+and+Their+Functions+in+Tumor+Progression&rft.jtitle=Cancers&rft.au=Grelet%2C+Simon&rft.au=McShane%2C+Ariel&rft.au=Geslain%2C+Renaud&rft.au=Howe%2C+Philip+H&rft.date=2017-07-01&rft.pub=MDPI+AG&rft.eissn=2072-6694&rft.volume=9&rft.issue=7&rft.spage=75&rft_id=info:doi/10.3390%2Fcancers9070075&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |