Feature Consistency-Based Prototype Network for Open-Set Hyperspectral Image Classification
Hyperspectral image (HSI) classification methods have made great progress in recent years. However, most of these methods are rooted in the closed-set assumption that the class distribution in the training and testing stages is consistent, which cannot handle the unknown class in open-world scenes....
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 35; no. 7; pp. 9286 - 9296 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hyperspectral image (HSI) classification methods have made great progress in recent years. However, most of these methods are rooted in the closed-set assumption that the class distribution in the training and testing stages is consistent, which cannot handle the unknown class in open-world scenes. In this work, we propose a feature consistency-based prototype network (FCPN) for open-set HSI classification, which is composed of three steps. First, a three-layer convolutional network is designed to extract the discriminative features, where a contrastive clustering module is introduced to enhance the discrimination. Then, the extracted features are used to construct a scalable prototype set. Finally, a prototype-guided open-set module (POSM) is proposed to identify the known samples and unknown samples. Extensive experiments reveal that our method achieves remarkable classification performance over other state-of-the-art classification techniques. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2022.3232225 |