PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains

Epithelial cysts are one of the fundamental architectures for mammalian organogenesis. Although in vitro studies using cultured epithelial cells have revealed proteins required for cyst formation, the mechanisms that orchestrate the functions of these proteins in vivo remain to be clarified. We show...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 133; no. 7; pp. 1389 - 1398
Main Authors Hirose, Tomonori, Karasawa, Mika, Sugitani, Yoshinobu, Fujisawa, Masayoshi, Akimoto, Kazunori, Ohno, Shigeo, Noda, Tetsuo
Format Journal Article
LanguageEnglish
Published England The Company of Biologists Limited 01.04.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Epithelial cysts are one of the fundamental architectures for mammalian organogenesis. Although in vitro studies using cultured epithelial cells have revealed proteins required for cyst formation, the mechanisms that orchestrate the functions of these proteins in vivo remain to be clarified. We show that the targeted disruption of the mouse Par3 gene results in midgestational embryonic lethality with defective epicardial development. The epicardium is mainly derived from epicardial cysts and essential for cardiomyocyte proliferation during cardiac morphogenesis. PAR3-deficient epicardial progenitor (EPP) cells do not form cell cysts and show defects in the establishment of apical cortical domains, but not in basolateral domains. In PAR3-deficient EPP cells, the localizations of aPKC, PAR6β and ezrin to the apical cortical domains are disturbed. By contrast, ZO1 andα 4/β1 integrins normally localize to cell-cell junctions and basal domains, respectively. Our observations indicate that EPP cell cyst formation requires PAR3 to interpret the polarity cues from cell-cell and cell-extracellular matrix interactions so that each EPP cell establishes apical cortical domains. These results also provide a clear example of the proper organization of epithelial tissues through the regulation of individual cell polarity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.02294