Bee Venom Reduces Neuroinflammation in the MPTP-Induced Model of Parkinson's Disease

ABSTRACT Aim: This study was designed to investigate the anti-inflammatory effects of bee venom (BV) in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease (PD). Method: MPTP was administered by intraperitoneal (IP) injection at 2-hr intervals over a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of neuroscience Vol. 121; no. 4; pp. 209 - 217
Main Authors Kim, Jong-In, Yang, Eun Jin, Lee, Myeong Soo, Kim, Yong-Suk, Huh, Youngbuhm, Cho, Ik-Hyun, Kang, Sungkeel, Koh, Hyung-Kyun
Format Journal Article
LanguageEnglish
Published England Informa Healthcare 01.04.2011
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT Aim: This study was designed to investigate the anti-inflammatory effects of bee venom (BV) in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease (PD). Method: MPTP was administered by intraperitoneal (IP) injection at 2-hr intervals over an 8-hr period. Mice were then subjected to BV subcutaneous injection and sacrificed on days 1 and 3 following the final MPTP injection. The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) was assessed by tyrosine hydroxylase (TH) immunohistochemistry. Microglial activation was measured by immunohistochemistry for macrophage antigen complex-1 (MAC-1) and inducible nitric oxide synthase (iNOS). The staining intensities of MAC-1 and iNOS were quantified with respect to optical density. Result: In animals treated with MPTP, the survival percentages of TH+ cells in the SNpc were 32% on day 1 and 46% on day 3 compared with normal mice. In BV-treated mice, the survival percentages of TH+ cells improved to 70% on day 1 and 78% on day 3 compared with normal mice. BV treatment also resulted in reduced expression of the inflammation markers MAC-1 and iNOS in the SNpc. Conclusion: These data suggest that BV injection may have a neuroprotective effect that attenuates the activation of the microglial response, which has implications for the treatment of PD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-7454
1563-5279
1543-5245
DOI:10.3109/00207454.2010.548613