Fuzzy Neural Network Control of a Flexible Robotic Manipulator Using Assumed Mode Method
In this paper, in order to analyze the single-link flexible structure, the assumed mode method is employed to develop the dynamic model. Based on the discrete dynamic model, fuzzy neural network (NN) control is investigated to track the desired trajectory accurately and to suppress the flexible vibr...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 29; no. 11; pp. 5214 - 5227 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, in order to analyze the single-link flexible structure, the assumed mode method is employed to develop the dynamic model. Based on the discrete dynamic model, fuzzy neural network (NN) control is investigated to track the desired trajectory accurately and to suppress the flexible vibration maximally. To ensure the stability rigorously as the goal, the system is proved to be uniform ultimate boundedness by Lyapunov's stability method. Eventually, simulations verify that the proposed control strategy is effective, and the control performance is compared with the proportion derivative control. The experiments are implemented on the Quanser platform to further demonstrate the feasibility of the proposed fuzzy NN control. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2017.2743103 |