EEG-Based Spatio-Temporal Convolutional Neural Network for Driver Fatigue Evaluation

Driver fatigue evaluation is of great importance for traffic safety and many intricate factors would exacerbate the difficulty. In this paper, based on the spatial-temporal structure of multichannel electroencephalogram (EEG) signals, we develop a novel EEG-based spatial-temporal convolutional neura...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 30; no. 9; pp. 2755 - 2763
Main Authors Gao, Zhongke, Wang, Xinmin, Yang, Yuxuan, Mu, Chaoxu, Cai, Qing, Dang, Weidong, Zuo, Siyang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Driver fatigue evaluation is of great importance for traffic safety and many intricate factors would exacerbate the difficulty. In this paper, based on the spatial-temporal structure of multichannel electroencephalogram (EEG) signals, we develop a novel EEG-based spatial-temporal convolutional neural network (ESTCNN) to detect driver fatigue. First, we introduce the core block to extract temporal dependencies from EEG signals. Then, we employ dense layers to fuse spatial features and realize classification. The developed network could automatically learn valid features from EEG signals, which outperforms the classical two-step machine learning algorithms. Importantly, we carry out fatigue driving experiments to collect EEG signals from eight subjects being alert and fatigue states. Using 2800 samples under within-subject splitting, we compare the effectiveness of ESTCNN with eight competitive methods. The results indicate that ESTCNN fulfills a better classification accuracy of 97.37% than these compared methods. Furthermore, the spatial-temporal structure of this framework advantages in computational efficiency and reference time, which allows further implementations in the brain-computer interface online systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2018.2886414