Cyclooxygenase-2 plays a critical role in retinal ganglion cell death after transient ischemia: Real-time monitoring of RGC survival using Thy-1-EGFP transgenic mice
The exact role of cyclooxygenase-2 (COX-2) in neurodegeneration of retinal ganglion cells (RGCs) in vivo following ischemia-reperfusion injury of the retina was unknown. We made transgenic mice in which the Thy-1.2 promoter drives the expression of EGFP cDNA (Thy-1-EGFP) in RGCs to monitor RGC survi...
Saved in:
Published in | Neuroscience research Vol. 65; no. 4; pp. 319 - 325 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier Ireland Ltd
01.12.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The exact role of cyclooxygenase-2 (COX-2) in neurodegeneration of retinal ganglion cells (RGCs)
in vivo following ischemia-reperfusion injury of the retina was unknown. We made transgenic mice in which the Thy-1.2 promoter drives the expression of EGFP cDNA (Thy-1-EGFP) in RGCs to monitor RGC survival and death in retinal whole mount preparations and in live animals. We show that celecoxib, a selective COX-2 inhibitor, blocks RGC death after ischemic injury. Furthermore, in COX-2 knockout (COX-2
−/−) mice, RGCs are resistant to ischemia-reperfusion injury. Finally, we performed time-lapse monitoring of RGC death after ischemia in Thy-1-EGFP; COX-2
−/− mice. Our data show that COX-2 plays a crucial role in ischemia-reperfusion injury-induced RGC death. Inhibition of COX-2 activity may therefore be an effective therapy for neurodegenerative diseases of the retina and optic nerve. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0168-0102 1872-8111 |
DOI: | 10.1016/j.neures.2009.08.008 |