A 7.2 keV spherical x-ray crystal backlighter for two-frame, two-color backlighting at Sandia’s Z Pulsed Power Facility

Many experiments on Sandia National Laboratories’ Z Pulsed Power Facility—a 30 MA, 100 ns rise-time, pulsed-power driver—use a monochromatic quartz crystal backlighter system at 1.865 keV (Si He α ) or 6.151 keV (Mn He α ) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire arra...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 88; no. 10; pp. 103503 - 103510
Main Authors Schollmeier, M. S., Knapp, P. F., Ampleford, D. J., Harding, E. C., Jennings, C. A., Lamppa, D. C., Loisel, G. P., Martin, M. R., Robertson, G. K., Shores, J. E., Smith, I. C., Speas, C. S., Weis, M. R., Porter, J. L., McBride, R. D.
Format Journal Article
LanguageEnglish
Published United States 01.10.2017
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many experiments on Sandia National Laboratories’ Z Pulsed Power Facility—a 30 MA, 100 ns rise-time, pulsed-power driver—use a monochromatic quartz crystal backlighter system at 1.865 keV (Si He α ) or 6.151 keV (Mn He α ) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios C R above 15 [ C R = r i ( 0 ) / r i ( t ) ] using the 6.151-keV backlighter system were too opaque to identify the inner radius r i of the liner with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co He α resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (C R about 4-5), high-areal-density liner implosions.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4994566