Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration
Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 45; pp. 2393 - 23938 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
24.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms
via
graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m
−2
h
−1
bar
−1
with an ultrahigh Na
2
SO
4
rejection of 99.6%, as well as an unprecedented Cl
−
/SO
4
2−
selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications.
Graphene quantum dot-mediated interfacial polymerization generates ultrathin loose polyamide nanofilms for high-performance nanofiltration. |
---|---|
AbstractList | Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m⁻² h⁻¹ bar⁻¹ with an ultrahigh Na₂SO₄ rejection of 99.6%, as well as an unprecedented Cl⁻/SO₄²⁻ selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications. Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m −2 h −1 bar −1 with an ultrahigh Na 2 SO 4 rejection of 99.6%, as well as an unprecedented Cl − /SO 4 2− selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications. Graphene quantum dot-mediated interfacial polymerization generates ultrathin loose polyamide nanofilms for high-performance nanofiltration. Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m −2 h −1 bar −1 with an ultrahigh Na 2 SO 4 rejection of 99.6%, as well as an unprecedented Cl − /SO 4 2− selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications. Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m−2 h−1 bar−1 with an ultrahigh Na2SO4 rejection of 99.6%, as well as an unprecedented Cl−/SO42− selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications. |
Author | You, Xinda Li, Ya Shen, Jianliang Zhang, Runnan Jiang, Zhongyi Yuan, Jinqiu Wu, Hong Su, Yanlei Li, Yafei |
AuthorAffiliation | Tianjin University Tianjin Key Laboratory of Membrane Science and Desalination Technology International Campus of Tianjin University Joint School of National University of Singapore School of Chemical Engineering and Technology Key Laboratory for Green Chemical Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) |
AuthorAffiliation_xml | – name: Joint School of National University of Singapore – name: International Campus of Tianjin University – name: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – name: Tianjin University – name: Tianjin Key Laboratory of Membrane Science and Desalination Technology – name: Key Laboratory for Green Chemical Technology – name: School of Chemical Engineering and Technology |
Author_xml | – sequence: 1 givenname: Yafei surname: Li fullname: Li, Yafei – sequence: 2 givenname: Xinda surname: You fullname: You, Xinda – sequence: 3 givenname: Ya surname: Li fullname: Li, Ya – sequence: 4 givenname: Jinqiu surname: Yuan fullname: Yuan, Jinqiu – sequence: 5 givenname: Jianliang surname: Shen fullname: Shen, Jianliang – sequence: 6 givenname: Runnan surname: Zhang fullname: Zhang, Runnan – sequence: 7 givenname: Hong surname: Wu fullname: Wu, Hong – sequence: 8 givenname: Yanlei surname: Su fullname: Su, Yanlei – sequence: 9 givenname: Zhongyi surname: Jiang fullname: Jiang, Zhongyi |
BookMark | eNptkctLBDEMxoso-Lx4FwpeRBhNp_PKUXzLghc9D902s9tlph3bmYP_vbOurCDmkkB-X8iXHLJd5x0xdirgSoDEawODApQCVzvsIIUckjLDYndbV9U-O4lxBVNUAAXiAVs8BtUvyRH_GJUbxo4bP3ByC-uIAhk-tkNQw9I63nofife-_VSdNcSdcr6xbRd54wNf2sUy6SlMdaec3rbXauvdMdtrVBvp5CcfsfeH-7fbp2T2-vh8ezNLdCbKITHF3GTzXM4lCk1aZWleNoBQSUVkipwEKqwESiVIGRQEqhCYlqhlgXNt5BG72Mztg_8YKQ51Z6OmtlWO_BjrNM9TAIEoJvT8D7ryY3DTdnWaFVlW5JUsJwo2lA4-xkBNre3wbWlyZttaQL0-fn0Hbzffx3-ZJJd_JH2wnQqf_8NnGzhEveV-Pym_AIdgkk8 |
CitedBy_id | crossref_primary_10_1016_j_memsci_2023_121714 crossref_primary_10_1039_D2TA10050A crossref_primary_10_1016_j_desal_2022_116283 crossref_primary_10_1016_j_memsci_2022_120507 crossref_primary_10_1021_acsanm_3c02401 crossref_primary_10_1038_s41545_024_00320_x crossref_primary_10_3390_polym16111481 crossref_primary_10_1016_j_memsci_2023_121399 crossref_primary_10_1021_acsestengg_1c00237 crossref_primary_10_1016_j_memsci_2021_120196 crossref_primary_10_1016_j_seppur_2022_120947 crossref_primary_10_1016_j_progpolymsci_2024_101815 crossref_primary_10_1007_s40034_021_00222_4 crossref_primary_10_1039_D1TA06439H crossref_primary_10_1016_j_memsci_2023_121969 crossref_primary_10_1016_j_memsci_2023_121689 crossref_primary_10_1016_j_memsci_2022_120451 crossref_primary_10_1016_j_memsci_2023_121960 crossref_primary_10_2139_ssrn_3996949 crossref_primary_10_1016_j_cej_2022_137013 crossref_primary_10_2139_ssrn_3996948 crossref_primary_10_1016_j_memsci_2024_123567 crossref_primary_10_2139_ssrn_3996947 crossref_primary_10_1016_j_memsci_2023_122386 crossref_primary_10_1016_j_memsci_2023_122382 crossref_primary_10_2139_ssrn_4007857 crossref_primary_10_1016_j_memsci_2021_119097 crossref_primary_10_1016_j_seppur_2022_120937 crossref_primary_10_1002_anie_202212816 crossref_primary_10_1039_D1TA04763A crossref_primary_10_1016_j_memsci_2021_119498 crossref_primary_10_1021_acs_nanolett_1c01711 crossref_primary_10_1016_j_seppur_2023_124876 crossref_primary_10_1039_D3TA03016D crossref_primary_10_1039_D3NA00110E crossref_primary_10_1002_ange_202212816 crossref_primary_10_1016_j_jiec_2022_11_017 crossref_primary_10_1016_j_memsci_2023_121377 crossref_primary_10_1021_acs_est_4c07334 crossref_primary_10_1038_s41467_023_36848_8 crossref_primary_10_1016_j_seppur_2022_122867 crossref_primary_10_1016_j_seppur_2023_123831 crossref_primary_10_1016_j_carbon_2023_118566 crossref_primary_10_1016_j_memsci_2021_119944 crossref_primary_10_1016_j_memsci_2022_120679 crossref_primary_10_1016_j_seppur_2022_121520 crossref_primary_10_1016_j_memsci_2022_120673 crossref_primary_10_1016_j_memsci_2023_121787 crossref_primary_10_1016_j_seppur_2024_130439 crossref_primary_10_1016_j_memsci_2024_122930 crossref_primary_10_1016_j_memsci_2022_121124 crossref_primary_10_1016_j_desal_2022_116300 crossref_primary_10_1002_adfm_202305815 crossref_primary_10_1016_j_progpolymsci_2021_101450 crossref_primary_10_1016_j_desal_2023_117176 crossref_primary_10_1016_j_memsci_2023_122048 crossref_primary_10_1016_j_memsci_2024_123019 crossref_primary_10_1016_j_memsci_2022_120269 crossref_primary_10_1016_j_ces_2024_120723 crossref_primary_10_1016_j_cej_2024_154862 crossref_primary_10_1016_j_cej_2022_136113 crossref_primary_10_1016_j_memsci_2022_121081 crossref_primary_10_1039_D0CS01599G crossref_primary_10_1016_j_desal_2022_116232 crossref_primary_10_1039_D1TA00090J crossref_primary_10_2139_ssrn_3968822 crossref_primary_10_1016_j_desal_2024_118278 crossref_primary_10_1007_s10118_022_2654_z crossref_primary_10_1016_j_memsci_2023_121406 crossref_primary_10_1039_D2RA06304B crossref_primary_10_1016_j_seppur_2024_129273 crossref_primary_10_1016_j_memsci_2024_123377 crossref_primary_10_1016_j_memsci_2022_121076 crossref_primary_10_1016_j_memsci_2023_121770 crossref_primary_10_1016_j_desal_2023_116862 crossref_primary_10_1016_j_cej_2021_133878 crossref_primary_10_1016_j_memsci_2021_119971 crossref_primary_10_1016_j_memsci_2023_121739 crossref_primary_10_1016_j_memsci_2021_120166 crossref_primary_10_1016_j_colsurfa_2021_126546 crossref_primary_10_1016_j_polymer_2022_125174 crossref_primary_10_1016_j_memsci_2023_121976 crossref_primary_10_1016_j_memsci_2024_122501 crossref_primary_10_1016_j_memsci_2024_123435 crossref_primary_10_1016_j_memsci_2022_121334 crossref_primary_10_1016_j_memsci_2022_121063 crossref_primary_10_1016_j_memsci_2024_123686 crossref_primary_10_1038_s41545_023_00271_9 crossref_primary_10_1016_j_isci_2021_102369 crossref_primary_10_1016_j_seppur_2023_125371 crossref_primary_10_1016_j_desal_2024_117904 crossref_primary_10_1016_j_memsci_2021_120051 crossref_primary_10_1039_D0TA12283A crossref_primary_10_1039_D1TA07413J crossref_primary_10_1016_j_seppur_2022_120648 crossref_primary_10_1002_adma_202108457 crossref_primary_10_1016_j_memsci_2021_119863 crossref_primary_10_1016_j_memsci_2021_119623 crossref_primary_10_1016_j_seppur_2021_118372 crossref_primary_10_1016_j_memsci_2023_121627 crossref_primary_10_1016_j_desal_2024_118295 crossref_primary_10_1016_j_cej_2022_137075 crossref_primary_10_1016_j_seppur_2025_132301 crossref_primary_10_2139_ssrn_4158288 crossref_primary_10_1016_j_seppur_2024_127590 crossref_primary_10_1016_j_memsci_2023_121863 crossref_primary_10_1016_j_desal_2023_116526 crossref_primary_10_1021_acsami_1c17086 crossref_primary_10_1016_j_flatc_2024_100609 crossref_primary_10_1016_j_memsci_2024_123153 crossref_primary_10_1016_j_desal_2022_116227 |
Cites_doi | 10.1016/j.desal.2014.10.043 10.1016/j.memsci.2017.03.040 10.1039/C9TA08163A 10.1002/adma.201808283 10.1039/C6TA06636D 10.1002/adma.201705973 10.1021/ja407665w 10.1002/adma.201707516 10.1126/science.aaa5058 10.1021/acs.iecr.9b02217 10.1126/science.aar6308 10.1016/j.watres.2015.04.037 10.1016/j.memsci.2018.11.044 10.1039/C7TA07582K 10.1126/science.aar2122 10.1016/j.memsci.2018.03.004 10.1016/j.desal.2010.04.029 10.1021/acsnano.9b04156 10.1038/natrevmats.2016.18 10.1039/C8TA05687K 10.1021/la020920q 10.1021/acsami.0c06417 10.1016/j.memsci.2019.01.040 10.1002/adma.201302030 10.1021/acs.langmuir.8b03655 10.1016/j.desal.2017.11.041 10.1002/adfm.200900167 10.1016/j.memsci.2018.12.036 10.1038/nmat4860 10.1016/j.memsci.2018.02.010 10.1021/nn4011494 10.1016/j.progpolymsci.2017.05.003 10.1126/science.aab0530 10.1021/mz300163h 10.1016/j.carbon.2012.06.002 10.1126/science.aax3103 10.1021/la048085v 10.1021/acsnano.8b09761 10.1038/532435a 10.1002/smll.201601253 10.1039/C4TA03607G |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/d0ta09319j |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 23938 |
ExternalDocumentID | 10_1039_D0TA09319J d0ta09319j |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c417t-d6bd4b53b391ceca4257f09083aeed65e19a98193a1ead91e0a619279c369bcd3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 05:29:05 EDT 2025 Mon Jun 30 12:03:16 EDT 2025 Tue Jul 01 01:13:00 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Sat Jan 08 03:48:13 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-d6bd4b53b391ceca4257f09083aeed65e19a98193a1ead91e0a619279c369bcd3 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d0ta09319j ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0048-8849 0000-0001-6600-4459 |
PQID | 2464465837 |
PQPubID | 2047523 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1039_D0TA09319J crossref_primary_10_1039_D0TA09319J proquest_miscellaneous_2552001991 proquest_journals_2464465837 rsc_primary_d0ta09319j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201124 |
PublicationDateYYYYMMDD | 2020-11-24 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201124 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Lau (D0TA09319J-(cit8)/*[position()=1]) 2015; 80 Dong (D0TA09319J-(cit34)/*[position()=1]) 2012; 50 Jiang (D0TA09319J-(cit17)/*[position()=1]) 2018; 30 Khan (D0TA09319J-(cit37)/*[position()=1]) 2020; 12 Tan (D0TA09319J-(cit4)/*[position()=1]) 2018; 360 Liu (D0TA09319J-(cit20)/*[position()=1]) 2017; 5 Shin (D0TA09319J-(cit35)/*[position()=1]) 2009; 19 Teow (D0TA09319J-(cit13)/*[position()=1]) 2019; 451 Shi (D0TA09319J-(cit33)/*[position()=1]) 2019; 13 Song (D0TA09319J-(cit41)/*[position()=1]) 2016; 4 Werber (D0TA09319J-(cit2)/*[position()=1]) 2016; 1 Mohammad (D0TA09319J-(cit3)/*[position()=1]) 2015; 356 Bi (D0TA09319J-(cit32)/*[position()=1]) 2019; 572 Zhu (D0TA09319J-(cit18)/*[position()=1]) 2018; 6 Chowdhury (D0TA09319J-(cit21)/*[position()=1]) 2018; 361 Lively (D0TA09319J-(cit7)/*[position()=1]) 2017; 16 Chan (D0TA09319J-(cit23)/*[position()=1]) 2013; 7 Song (D0TA09319J-(cit26)/*[position()=1]) 2019; 35 Yuan (D0TA09319J-(cit15)/*[position()=1]) 2019; 7 Mi (D0TA09319J-(cit38)/*[position()=1]) 2019; 364 Bano (D0TA09319J-(cit24)/*[position()=1]) 2015; 3 Sholl (D0TA09319J-(cit1)/*[position()=1]) 2016; 532 Tu (D0TA09319J-(cit39)/*[position()=1]) 2010; 260 Yan (D0TA09319J-(cit30)/*[position()=1]) 2019; 31 Gu (D0TA09319J-(cit16)/*[position()=1]) 2013; 25 Wu (D0TA09319J-(cit31)/*[position()=1]) 2018; 30 Verbeke (D0TA09319J-(cit40)/*[position()=1]) 2017; 72 Wang (D0TA09319J-(cit10)/*[position()=1]) 2017; 533 Sorribas (D0TA09319J-(cit25)/*[position()=1]) 2013; 135 Wang (D0TA09319J-(cit19)/*[position()=1]) 2019; 574 Zhu (D0TA09319J-(cit14)/*[position()=1]) 2016; 12 Zhu (D0TA09319J-(cit27)/*[position()=1]) 2018; 554 Freger (D0TA09319J-(cit29)/*[position()=1]) 2003; 19 Ma (D0TA09319J-(cit11)/*[position()=1]) 2012; 1 Karan (D0TA09319J-(cit12)/*[position()=1]) 2015; 348 Bi (D0TA09319J-(cit22)/*[position()=1]) 2018; 553 Freger (D0TA09319J-(cit28)/*[position()=1]) 2005; 21 Park (D0TA09319J-(cit6)/*[position()=1]) 2017; 356 Wang (D0TA09319J-(cit36)/*[position()=1]) 2019; 58 Wu (D0TA09319J-(cit9)/*[position()=1]) 2019; 576 Gao (D0TA09319J-(cit5)/*[position()=1]) 2019; 13 |
References_xml | – volume: 356 start-page: 226 year: 2015 ident: D0TA09319J-(cit3)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2014.10.043 – volume: 533 start-page: 279 year: 2017 ident: D0TA09319J-(cit10)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.03.040 – volume: 7 start-page: 25641 year: 2019 ident: D0TA09319J-(cit15)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08163A – volume: 31 start-page: 1808283 year: 2019 ident: D0TA09319J-(cit30)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201808283 – volume: 4 start-page: 16896 year: 2016 ident: D0TA09319J-(cit41)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06636D – volume: 30 start-page: 1705973 year: 2018 ident: D0TA09319J-(cit17)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705973 – volume: 135 start-page: 15201 year: 2013 ident: D0TA09319J-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407665w – volume: 30 start-page: 1707516 year: 2018 ident: D0TA09319J-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201707516 – volume: 348 start-page: 1347 year: 2015 ident: D0TA09319J-(cit12)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa5058 – volume: 58 start-page: 12280 year: 2019 ident: D0TA09319J-(cit36)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b02217 – volume: 360 start-page: 518 year: 2018 ident: D0TA09319J-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.aar6308 – volume: 80 start-page: 306 year: 2015 ident: D0TA09319J-(cit8)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2015.04.037 – volume: 572 start-page: 504 year: 2019 ident: D0TA09319J-(cit32)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.11.044 – volume: 5 start-page: 22988 year: 2017 ident: D0TA09319J-(cit20)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07582K – volume: 361 start-page: 682 year: 2018 ident: D0TA09319J-(cit21)/*[position()=1] publication-title: Science doi: 10.1126/science.aar2122 – volume: 554 start-page: 97 year: 2018 ident: D0TA09319J-(cit27)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.03.004 – volume: 260 start-page: 218 year: 2010 ident: D0TA09319J-(cit39)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2010.04.029 – volume: 13 start-page: 10366 year: 2019 ident: D0TA09319J-(cit33)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b04156 – volume: 1 start-page: 16018 year: 2016 ident: D0TA09319J-(cit2)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.18 – volume: 6 start-page: 15701 year: 2018 ident: D0TA09319J-(cit18)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05687K – volume: 19 start-page: 4791 year: 2003 ident: D0TA09319J-(cit29)/*[position()=1] publication-title: Langmuir doi: 10.1021/la020920q – volume: 12 start-page: 27777 year: 2020 ident: D0TA09319J-(cit37)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c06417 – volume: 576 start-page: 131 year: 2019 ident: D0TA09319J-(cit9)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.01.040 – volume: 25 start-page: 4778 year: 2013 ident: D0TA09319J-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201302030 – volume: 35 start-page: 589 year: 2019 ident: D0TA09319J-(cit26)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03655 – volume: 451 start-page: 2 year: 2019 ident: D0TA09319J-(cit13)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2017.11.041 – volume: 19 start-page: 1987 year: 2009 ident: D0TA09319J-(cit35)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900167 – volume: 574 start-page: 1 year: 2019 ident: D0TA09319J-(cit19)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.12.036 – volume: 16 start-page: 276 year: 2017 ident: D0TA09319J-(cit7)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4860 – volume: 553 start-page: 17 year: 2018 ident: D0TA09319J-(cit22)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.02.010 – volume: 7 start-page: 5308 year: 2013 ident: D0TA09319J-(cit23)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn4011494 – volume: 72 start-page: 1 year: 2017 ident: D0TA09319J-(cit40)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2017.05.003 – volume: 356 start-page: eaab0530 year: 2017 ident: D0TA09319J-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.aab0530 – volume: 1 start-page: 723 year: 2012 ident: D0TA09319J-(cit11)/*[position()=1] publication-title: ACS Macro Lett. doi: 10.1021/mz300163h – volume: 50 start-page: 4738 year: 2012 ident: D0TA09319J-(cit34)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2012.06.002 – volume: 364 start-page: 1033 year: 2019 ident: D0TA09319J-(cit38)/*[position()=1] publication-title: Science doi: 10.1126/science.aax3103 – volume: 21 start-page: 1884 year: 2005 ident: D0TA09319J-(cit28)/*[position()=1] publication-title: Langmuir doi: 10.1021/la048085v – volume: 13 start-page: 5278 year: 2019 ident: D0TA09319J-(cit5)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b09761 – volume: 532 start-page: 435 year: 2016 ident: D0TA09319J-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/532435a – volume: 12 start-page: 5034 year: 2016 ident: D0TA09319J-(cit14)/*[position()=1] publication-title: Small doi: 10.1002/smll.201601253 – volume: 3 start-page: 2065 year: 2015 ident: D0TA09319J-(cit24)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03607G |
SSID | ssj0000800699 |
Score | 2.6045294 |
Snippet | Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2393 |
SubjectTerms | Chemical interactions Diffusion rate energy Graphene Membranes Nanofiltration nanosheets Nanotechnology Piperazine Polyamide resins Polyamides Polymerization Pore size Porosity Quantum dots Regulators Reluctance Selectivity Sodium sulfate Thickness Upper bounds |
Title | Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration |
URI | https://www.proquest.com/docview/2464465837 https://www.proquest.com/docview/2552001991 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QscEK8VhQUZwQVFKXk4SX2soMtSleWSSuUUOY6zBHXTsiQH-A_8Z2aS2MnCIi1crMp2k9bzZTzjzHxDyMtMejJXGDYYOJnNVOrYKfNy241EDh5XqAKGucMfzsLTNVtugs1o9HMQtVRX6VT-uDav5H-kCn0gV8yS_QfJmotCB3wG-UILEob2RjJ-h2zToKwwNRL2jgsLXExLdQyDYEnWW-Se_VyU1naHcen73fa7uCgyZZWixFrdLRuDhZzF9n6QQtANd5S6fzFgwdZt_6QlddW4qTVvE4D0SEMo3qYXNif0Ol0LI3LNYf6qiSj4JHJVDJQQ9m2GJwZ6mplTt4e3y6L8WtTD4wvwVV3XbrOmWy3nAUjsiLVlbbVKng2QxwJrP0WiNsfGdjbUttg72LrN-B_7guMjrWrmVMLhoHS-9LuffuN_9jE5Wa9WSbzYxAfk0AOvwxuTw_kifr8yh3ZoXodNTVLzszXlrc9f95e_auT0nsvBpS4r05gv8V1ypxMbnbcgukdGqrxPbg_YKB-Qcw0n2sGJApxoDydq4EQbOFEDJ2rgREHg9Hc40atwekjWJ4v4zand1eGwJXOjys7CNGNp4Kc-d6WSAtV87nAw3gVYWGGgXC44WJa-cEEvcVc5At3yiEs_5KnM_CMyLnelekSo56lMuqGQXo5UdZkAh5gJHgo_YNIR2YS80guXyI6kHmulbJMmWMLnyVsnnjeLvJyQF2buvqVmuXbWsV7_pHt0vyUeC5EocOZHE_LcDMOTgm_LRKl2NcwJkJEMIwMn5AjkZu7Ri_nxDb78hNzqYX9MxtVlrZ6CHVulzzp0_QI56qTG |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+quantum+dot+engineered+ultrathin+loose+polyamide+nanofilms+for+high-performance+nanofiltration&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+Yafei&rft.au=You%2C+Xinda&rft.au=Li%2C+Ya&rft.au=Yuan%2C+Jinqiu&rft.date=2020-11-24&rft.issn=2050-7496&rft.volume=8&rft.issue=45+p.23930-23938&rft.spage=23930&rft.epage=23938&rft_id=info:doi/10.1039%2Fd0ta09319j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |