Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration

Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 8; no. 45; pp. 2393 - 23938
Main Authors Li, Yafei, You, Xinda, Li, Ya, Yuan, Jinqiu, Shen, Jianliang, Zhang, Runnan, Wu, Hong, Su, Yanlei, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 24.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m −2 h −1 bar −1 with an ultrahigh Na 2 SO 4 rejection of 99.6%, as well as an unprecedented Cl − /SO 4 2− selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications. Graphene quantum dot-mediated interfacial polymerization generates ultrathin loose polyamide nanofilms for high-performance nanofiltration.
AbstractList Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m⁻² h⁻¹ bar⁻¹ with an ultrahigh Na₂SO₄ rejection of 99.6%, as well as an unprecedented Cl⁻/SO₄²⁻ selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications.
Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m −2 h −1 bar −1 with an ultrahigh Na 2 SO 4 rejection of 99.6%, as well as an unprecedented Cl − /SO 4 2− selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications. Graphene quantum dot-mediated interfacial polymerization generates ultrathin loose polyamide nanofilms for high-performance nanofiltration.
Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m −2 h −1 bar −1 with an ultrahigh Na 2 SO 4 rejection of 99.6%, as well as an unprecedented Cl − /SO 4 2− selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications.
Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an ultrathin thickness and loose architecture of nanofiltration membranes is in great demand and a severe challenge. Herein, we demonstrate a two-in-one strategy toward ultrathin loose polyamide (ULPA) nanofilms via graphene quantum dot (GQD)-mediated support-free interfacial polymerization. Featuring favorable chemical interactions and size, GQDs serve as quasi-molecule-scale regulators to reduce the diffusion rate of piperazine, and generate ULPA nanofilms with a controllable thickness from 18.3 to 5.5 nm. Concomitantly, GQDs are incorporated into ULPA during interfacial polymerization to construct a loose structure, which is manifested by an enlarged pore size. The resultant ULPA composite membranes overcome the upper-bound limit of polyamide membranes, exhibiting a water permeance of 32.1 L m−2 h−1 bar−1 with an ultrahigh Na2SO4 rejection of 99.6%, as well as an unprecedented Cl−/SO42− selectivity of 205.8 that reaches the highest value ever reported. This two-in-one strategy may open a facile avenue to design advanced membranes for environmental and energy relevant applications.
Author You, Xinda
Li, Ya
Shen, Jianliang
Zhang, Runnan
Jiang, Zhongyi
Yuan, Jinqiu
Wu, Hong
Su, Yanlei
Li, Yafei
AuthorAffiliation Tianjin University
Tianjin Key Laboratory of Membrane Science and Desalination Technology
International Campus of Tianjin University
Joint School of National University of Singapore
School of Chemical Engineering and Technology
Key Laboratory for Green Chemical Technology
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
AuthorAffiliation_xml – name: Joint School of National University of Singapore
– name: International Campus of Tianjin University
– name: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– name: Tianjin University
– name: Tianjin Key Laboratory of Membrane Science and Desalination Technology
– name: Key Laboratory for Green Chemical Technology
– name: School of Chemical Engineering and Technology
Author_xml – sequence: 1
  givenname: Yafei
  surname: Li
  fullname: Li, Yafei
– sequence: 2
  givenname: Xinda
  surname: You
  fullname: You, Xinda
– sequence: 3
  givenname: Ya
  surname: Li
  fullname: Li, Ya
– sequence: 4
  givenname: Jinqiu
  surname: Yuan
  fullname: Yuan, Jinqiu
– sequence: 5
  givenname: Jianliang
  surname: Shen
  fullname: Shen, Jianliang
– sequence: 6
  givenname: Runnan
  surname: Zhang
  fullname: Zhang, Runnan
– sequence: 7
  givenname: Hong
  surname: Wu
  fullname: Wu, Hong
– sequence: 8
  givenname: Yanlei
  surname: Su
  fullname: Su, Yanlei
– sequence: 9
  givenname: Zhongyi
  surname: Jiang
  fullname: Jiang, Zhongyi
BookMark eNptkctLBDEMxoso-Lx4FwpeRBhNp_PKUXzLghc9D902s9tlph3bmYP_vbOurCDmkkB-X8iXHLJd5x0xdirgSoDEawODApQCVzvsIIUckjLDYndbV9U-O4lxBVNUAAXiAVs8BtUvyRH_GJUbxo4bP3ByC-uIAhk-tkNQw9I63nofife-_VSdNcSdcr6xbRd54wNf2sUy6SlMdaec3rbXauvdMdtrVBvp5CcfsfeH-7fbp2T2-vh8ezNLdCbKITHF3GTzXM4lCk1aZWleNoBQSUVkipwEKqwESiVIGRQEqhCYlqhlgXNt5BG72Mztg_8YKQ51Z6OmtlWO_BjrNM9TAIEoJvT8D7ryY3DTdnWaFVlW5JUsJwo2lA4-xkBNre3wbWlyZttaQL0-fn0Hbzffx3-ZJJd_JH2wnQqf_8NnGzhEveV-Pym_AIdgkk8
CitedBy_id crossref_primary_10_1016_j_memsci_2023_121714
crossref_primary_10_1039_D2TA10050A
crossref_primary_10_1016_j_desal_2022_116283
crossref_primary_10_1016_j_memsci_2022_120507
crossref_primary_10_1021_acsanm_3c02401
crossref_primary_10_1038_s41545_024_00320_x
crossref_primary_10_3390_polym16111481
crossref_primary_10_1016_j_memsci_2023_121399
crossref_primary_10_1021_acsestengg_1c00237
crossref_primary_10_1016_j_memsci_2021_120196
crossref_primary_10_1016_j_seppur_2022_120947
crossref_primary_10_1016_j_progpolymsci_2024_101815
crossref_primary_10_1007_s40034_021_00222_4
crossref_primary_10_1039_D1TA06439H
crossref_primary_10_1016_j_memsci_2023_121969
crossref_primary_10_1016_j_memsci_2023_121689
crossref_primary_10_1016_j_memsci_2022_120451
crossref_primary_10_1016_j_memsci_2023_121960
crossref_primary_10_2139_ssrn_3996949
crossref_primary_10_1016_j_cej_2022_137013
crossref_primary_10_2139_ssrn_3996948
crossref_primary_10_1016_j_memsci_2024_123567
crossref_primary_10_2139_ssrn_3996947
crossref_primary_10_1016_j_memsci_2023_122386
crossref_primary_10_1016_j_memsci_2023_122382
crossref_primary_10_2139_ssrn_4007857
crossref_primary_10_1016_j_memsci_2021_119097
crossref_primary_10_1016_j_seppur_2022_120937
crossref_primary_10_1002_anie_202212816
crossref_primary_10_1039_D1TA04763A
crossref_primary_10_1016_j_memsci_2021_119498
crossref_primary_10_1021_acs_nanolett_1c01711
crossref_primary_10_1016_j_seppur_2023_124876
crossref_primary_10_1039_D3TA03016D
crossref_primary_10_1039_D3NA00110E
crossref_primary_10_1002_ange_202212816
crossref_primary_10_1016_j_jiec_2022_11_017
crossref_primary_10_1016_j_memsci_2023_121377
crossref_primary_10_1021_acs_est_4c07334
crossref_primary_10_1038_s41467_023_36848_8
crossref_primary_10_1016_j_seppur_2022_122867
crossref_primary_10_1016_j_seppur_2023_123831
crossref_primary_10_1016_j_carbon_2023_118566
crossref_primary_10_1016_j_memsci_2021_119944
crossref_primary_10_1016_j_memsci_2022_120679
crossref_primary_10_1016_j_seppur_2022_121520
crossref_primary_10_1016_j_memsci_2022_120673
crossref_primary_10_1016_j_memsci_2023_121787
crossref_primary_10_1016_j_seppur_2024_130439
crossref_primary_10_1016_j_memsci_2024_122930
crossref_primary_10_1016_j_memsci_2022_121124
crossref_primary_10_1016_j_desal_2022_116300
crossref_primary_10_1002_adfm_202305815
crossref_primary_10_1016_j_progpolymsci_2021_101450
crossref_primary_10_1016_j_desal_2023_117176
crossref_primary_10_1016_j_memsci_2023_122048
crossref_primary_10_1016_j_memsci_2024_123019
crossref_primary_10_1016_j_memsci_2022_120269
crossref_primary_10_1016_j_ces_2024_120723
crossref_primary_10_1016_j_cej_2024_154862
crossref_primary_10_1016_j_cej_2022_136113
crossref_primary_10_1016_j_memsci_2022_121081
crossref_primary_10_1039_D0CS01599G
crossref_primary_10_1016_j_desal_2022_116232
crossref_primary_10_1039_D1TA00090J
crossref_primary_10_2139_ssrn_3968822
crossref_primary_10_1016_j_desal_2024_118278
crossref_primary_10_1007_s10118_022_2654_z
crossref_primary_10_1016_j_memsci_2023_121406
crossref_primary_10_1039_D2RA06304B
crossref_primary_10_1016_j_seppur_2024_129273
crossref_primary_10_1016_j_memsci_2024_123377
crossref_primary_10_1016_j_memsci_2022_121076
crossref_primary_10_1016_j_memsci_2023_121770
crossref_primary_10_1016_j_desal_2023_116862
crossref_primary_10_1016_j_cej_2021_133878
crossref_primary_10_1016_j_memsci_2021_119971
crossref_primary_10_1016_j_memsci_2023_121739
crossref_primary_10_1016_j_memsci_2021_120166
crossref_primary_10_1016_j_colsurfa_2021_126546
crossref_primary_10_1016_j_polymer_2022_125174
crossref_primary_10_1016_j_memsci_2023_121976
crossref_primary_10_1016_j_memsci_2024_122501
crossref_primary_10_1016_j_memsci_2024_123435
crossref_primary_10_1016_j_memsci_2022_121334
crossref_primary_10_1016_j_memsci_2022_121063
crossref_primary_10_1016_j_memsci_2024_123686
crossref_primary_10_1038_s41545_023_00271_9
crossref_primary_10_1016_j_isci_2021_102369
crossref_primary_10_1016_j_seppur_2023_125371
crossref_primary_10_1016_j_desal_2024_117904
crossref_primary_10_1016_j_memsci_2021_120051
crossref_primary_10_1039_D0TA12283A
crossref_primary_10_1039_D1TA07413J
crossref_primary_10_1016_j_seppur_2022_120648
crossref_primary_10_1002_adma_202108457
crossref_primary_10_1016_j_memsci_2021_119863
crossref_primary_10_1016_j_memsci_2021_119623
crossref_primary_10_1016_j_seppur_2021_118372
crossref_primary_10_1016_j_memsci_2023_121627
crossref_primary_10_1016_j_desal_2024_118295
crossref_primary_10_1016_j_cej_2022_137075
crossref_primary_10_1016_j_seppur_2025_132301
crossref_primary_10_2139_ssrn_4158288
crossref_primary_10_1016_j_seppur_2024_127590
crossref_primary_10_1016_j_memsci_2023_121863
crossref_primary_10_1016_j_desal_2023_116526
crossref_primary_10_1021_acsami_1c17086
crossref_primary_10_1016_j_flatc_2024_100609
crossref_primary_10_1016_j_memsci_2024_123153
crossref_primary_10_1016_j_desal_2022_116227
Cites_doi 10.1016/j.desal.2014.10.043
10.1016/j.memsci.2017.03.040
10.1039/C9TA08163A
10.1002/adma.201808283
10.1039/C6TA06636D
10.1002/adma.201705973
10.1021/ja407665w
10.1002/adma.201707516
10.1126/science.aaa5058
10.1021/acs.iecr.9b02217
10.1126/science.aar6308
10.1016/j.watres.2015.04.037
10.1016/j.memsci.2018.11.044
10.1039/C7TA07582K
10.1126/science.aar2122
10.1016/j.memsci.2018.03.004
10.1016/j.desal.2010.04.029
10.1021/acsnano.9b04156
10.1038/natrevmats.2016.18
10.1039/C8TA05687K
10.1021/la020920q
10.1021/acsami.0c06417
10.1016/j.memsci.2019.01.040
10.1002/adma.201302030
10.1021/acs.langmuir.8b03655
10.1016/j.desal.2017.11.041
10.1002/adfm.200900167
10.1016/j.memsci.2018.12.036
10.1038/nmat4860
10.1016/j.memsci.2018.02.010
10.1021/nn4011494
10.1016/j.progpolymsci.2017.05.003
10.1126/science.aab0530
10.1021/mz300163h
10.1016/j.carbon.2012.06.002
10.1126/science.aax3103
10.1021/la048085v
10.1021/acsnano.8b09761
10.1038/532435a
10.1002/smll.201601253
10.1039/C4TA03607G
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/d0ta09319j
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 23938
ExternalDocumentID 10_1039_D0TA09319J
d0ta09319j
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c417t-d6bd4b53b391ceca4257f09083aeed65e19a98193a1ead91e0a619279c369bcd3
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 05:29:05 EDT 2025
Mon Jun 30 12:03:16 EDT 2025
Tue Jul 01 01:13:00 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Sat Jan 08 03:48:13 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-d6bd4b53b391ceca4257f09083aeed65e19a98193a1ead91e0a619279c369bcd3
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d0ta09319j
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0048-8849
0000-0001-6600-4459
PQID 2464465837
PQPubID 2047523
PageCount 9
ParticipantIDs crossref_citationtrail_10_1039_D0TA09319J
crossref_primary_10_1039_D0TA09319J
proquest_miscellaneous_2552001991
proquest_journals_2464465837
rsc_primary_d0ta09319j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201124
PublicationDateYYYYMMDD 2020-11-24
PublicationDate_xml – month: 11
  year: 2020
  text: 20201124
  day: 24
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lau (D0TA09319J-(cit8)/*[position()=1]) 2015; 80
Dong (D0TA09319J-(cit34)/*[position()=1]) 2012; 50
Jiang (D0TA09319J-(cit17)/*[position()=1]) 2018; 30
Khan (D0TA09319J-(cit37)/*[position()=1]) 2020; 12
Tan (D0TA09319J-(cit4)/*[position()=1]) 2018; 360
Liu (D0TA09319J-(cit20)/*[position()=1]) 2017; 5
Shin (D0TA09319J-(cit35)/*[position()=1]) 2009; 19
Teow (D0TA09319J-(cit13)/*[position()=1]) 2019; 451
Shi (D0TA09319J-(cit33)/*[position()=1]) 2019; 13
Song (D0TA09319J-(cit41)/*[position()=1]) 2016; 4
Werber (D0TA09319J-(cit2)/*[position()=1]) 2016; 1
Mohammad (D0TA09319J-(cit3)/*[position()=1]) 2015; 356
Bi (D0TA09319J-(cit32)/*[position()=1]) 2019; 572
Zhu (D0TA09319J-(cit18)/*[position()=1]) 2018; 6
Chowdhury (D0TA09319J-(cit21)/*[position()=1]) 2018; 361
Lively (D0TA09319J-(cit7)/*[position()=1]) 2017; 16
Chan (D0TA09319J-(cit23)/*[position()=1]) 2013; 7
Song (D0TA09319J-(cit26)/*[position()=1]) 2019; 35
Yuan (D0TA09319J-(cit15)/*[position()=1]) 2019; 7
Mi (D0TA09319J-(cit38)/*[position()=1]) 2019; 364
Bano (D0TA09319J-(cit24)/*[position()=1]) 2015; 3
Sholl (D0TA09319J-(cit1)/*[position()=1]) 2016; 532
Tu (D0TA09319J-(cit39)/*[position()=1]) 2010; 260
Yan (D0TA09319J-(cit30)/*[position()=1]) 2019; 31
Gu (D0TA09319J-(cit16)/*[position()=1]) 2013; 25
Wu (D0TA09319J-(cit31)/*[position()=1]) 2018; 30
Verbeke (D0TA09319J-(cit40)/*[position()=1]) 2017; 72
Wang (D0TA09319J-(cit10)/*[position()=1]) 2017; 533
Sorribas (D0TA09319J-(cit25)/*[position()=1]) 2013; 135
Wang (D0TA09319J-(cit19)/*[position()=1]) 2019; 574
Zhu (D0TA09319J-(cit14)/*[position()=1]) 2016; 12
Zhu (D0TA09319J-(cit27)/*[position()=1]) 2018; 554
Freger (D0TA09319J-(cit29)/*[position()=1]) 2003; 19
Ma (D0TA09319J-(cit11)/*[position()=1]) 2012; 1
Karan (D0TA09319J-(cit12)/*[position()=1]) 2015; 348
Bi (D0TA09319J-(cit22)/*[position()=1]) 2018; 553
Freger (D0TA09319J-(cit28)/*[position()=1]) 2005; 21
Park (D0TA09319J-(cit6)/*[position()=1]) 2017; 356
Wang (D0TA09319J-(cit36)/*[position()=1]) 2019; 58
Wu (D0TA09319J-(cit9)/*[position()=1]) 2019; 576
Gao (D0TA09319J-(cit5)/*[position()=1]) 2019; 13
References_xml – volume: 356
  start-page: 226
  year: 2015
  ident: D0TA09319J-(cit3)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.10.043
– volume: 533
  start-page: 279
  year: 2017
  ident: D0TA09319J-(cit10)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.03.040
– volume: 7
  start-page: 25641
  year: 2019
  ident: D0TA09319J-(cit15)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA08163A
– volume: 31
  start-page: 1808283
  year: 2019
  ident: D0TA09319J-(cit30)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808283
– volume: 4
  start-page: 16896
  year: 2016
  ident: D0TA09319J-(cit41)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06636D
– volume: 30
  start-page: 1705973
  year: 2018
  ident: D0TA09319J-(cit17)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705973
– volume: 135
  start-page: 15201
  year: 2013
  ident: D0TA09319J-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407665w
– volume: 30
  start-page: 1707516
  year: 2018
  ident: D0TA09319J-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707516
– volume: 348
  start-page: 1347
  year: 2015
  ident: D0TA09319J-(cit12)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa5058
– volume: 58
  start-page: 12280
  year: 2019
  ident: D0TA09319J-(cit36)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b02217
– volume: 360
  start-page: 518
  year: 2018
  ident: D0TA09319J-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aar6308
– volume: 80
  start-page: 306
  year: 2015
  ident: D0TA09319J-(cit8)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.04.037
– volume: 572
  start-page: 504
  year: 2019
  ident: D0TA09319J-(cit32)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.11.044
– volume: 5
  start-page: 22988
  year: 2017
  ident: D0TA09319J-(cit20)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07582K
– volume: 361
  start-page: 682
  year: 2018
  ident: D0TA09319J-(cit21)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aar2122
– volume: 554
  start-page: 97
  year: 2018
  ident: D0TA09319J-(cit27)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.03.004
– volume: 260
  start-page: 218
  year: 2010
  ident: D0TA09319J-(cit39)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2010.04.029
– volume: 13
  start-page: 10366
  year: 2019
  ident: D0TA09319J-(cit33)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04156
– volume: 1
  start-page: 16018
  year: 2016
  ident: D0TA09319J-(cit2)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.18
– volume: 6
  start-page: 15701
  year: 2018
  ident: D0TA09319J-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05687K
– volume: 19
  start-page: 4791
  year: 2003
  ident: D0TA09319J-(cit29)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la020920q
– volume: 12
  start-page: 27777
  year: 2020
  ident: D0TA09319J-(cit37)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c06417
– volume: 576
  start-page: 131
  year: 2019
  ident: D0TA09319J-(cit9)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.01.040
– volume: 25
  start-page: 4778
  year: 2013
  ident: D0TA09319J-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302030
– volume: 35
  start-page: 589
  year: 2019
  ident: D0TA09319J-(cit26)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b03655
– volume: 451
  start-page: 2
  year: 2019
  ident: D0TA09319J-(cit13)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.11.041
– volume: 19
  start-page: 1987
  year: 2009
  ident: D0TA09319J-(cit35)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200900167
– volume: 574
  start-page: 1
  year: 2019
  ident: D0TA09319J-(cit19)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.12.036
– volume: 16
  start-page: 276
  year: 2017
  ident: D0TA09319J-(cit7)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4860
– volume: 553
  start-page: 17
  year: 2018
  ident: D0TA09319J-(cit22)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.02.010
– volume: 7
  start-page: 5308
  year: 2013
  ident: D0TA09319J-(cit23)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn4011494
– volume: 72
  start-page: 1
  year: 2017
  ident: D0TA09319J-(cit40)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2017.05.003
– volume: 356
  start-page: eaab0530
  year: 2017
  ident: D0TA09319J-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aab0530
– volume: 1
  start-page: 723
  year: 2012
  ident: D0TA09319J-(cit11)/*[position()=1]
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz300163h
– volume: 50
  start-page: 4738
  year: 2012
  ident: D0TA09319J-(cit34)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.06.002
– volume: 364
  start-page: 1033
  year: 2019
  ident: D0TA09319J-(cit38)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aax3103
– volume: 21
  start-page: 1884
  year: 2005
  ident: D0TA09319J-(cit28)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la048085v
– volume: 13
  start-page: 5278
  year: 2019
  ident: D0TA09319J-(cit5)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09761
– volume: 532
  start-page: 435
  year: 2016
  ident: D0TA09319J-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/532435a
– volume: 12
  start-page: 5034
  year: 2016
  ident: D0TA09319J-(cit14)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201601253
– volume: 3
  start-page: 2065
  year: 2015
  ident: D0TA09319J-(cit24)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03607G
SSID ssj0000800699
Score 2.6045294
Snippet Pursuing high water permeance with ultrahigh selectivity is a longstanding objective for nanofiltration membranes. At present, simultaneously engineering an...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2393
SubjectTerms Chemical interactions
Diffusion rate
energy
Graphene
Membranes
Nanofiltration
nanosheets
Nanotechnology
Piperazine
Polyamide resins
Polyamides
Polymerization
Pore size
Porosity
Quantum dots
Regulators
Reluctance
Selectivity
Sodium sulfate
Thickness
Upper bounds
Title Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration
URI https://www.proquest.com/docview/2464465837
https://www.proquest.com/docview/2552001991
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QscEK8VhQUZwQVFKXk4SX2soMtSleWSSuUUOY6zBHXTsiQH-A_8Z2aS2MnCIi1crMp2k9bzZTzjzHxDyMtMejJXGDYYOJnNVOrYKfNy241EDh5XqAKGucMfzsLTNVtugs1o9HMQtVRX6VT-uDav5H-kCn0gV8yS_QfJmotCB3wG-UILEob2RjJ-h2zToKwwNRL2jgsLXExLdQyDYEnWW-Se_VyU1naHcen73fa7uCgyZZWixFrdLRuDhZzF9n6QQtANd5S6fzFgwdZt_6QlddW4qTVvE4D0SEMo3qYXNif0Ol0LI3LNYf6qiSj4JHJVDJQQ9m2GJwZ6mplTt4e3y6L8WtTD4wvwVV3XbrOmWy3nAUjsiLVlbbVKng2QxwJrP0WiNsfGdjbUttg72LrN-B_7guMjrWrmVMLhoHS-9LuffuN_9jE5Wa9WSbzYxAfk0AOvwxuTw_kifr8yh3ZoXodNTVLzszXlrc9f95e_auT0nsvBpS4r05gv8V1ypxMbnbcgukdGqrxPbg_YKB-Qcw0n2sGJApxoDydq4EQbOFEDJ2rgREHg9Hc40atwekjWJ4v4zand1eGwJXOjys7CNGNp4Kc-d6WSAtV87nAw3gVYWGGgXC44WJa-cEEvcVc5At3yiEs_5KnM_CMyLnelekSo56lMuqGQXo5UdZkAh5gJHgo_YNIR2YS80guXyI6kHmulbJMmWMLnyVsnnjeLvJyQF2buvqVmuXbWsV7_pHt0vyUeC5EocOZHE_LcDMOTgm_LRKl2NcwJkJEMIwMn5AjkZu7Ri_nxDb78hNzqYX9MxtVlrZ6CHVulzzp0_QI56qTG
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+quantum+dot+engineered+ultrathin+loose+polyamide+nanofilms+for+high-performance+nanofiltration&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+Yafei&rft.au=You%2C+Xinda&rft.au=Li%2C+Ya&rft.au=Yuan%2C+Jinqiu&rft.date=2020-11-24&rft.issn=2050-7496&rft.volume=8&rft.issue=45+p.23930-23938&rft.spage=23930&rft.epage=23938&rft_id=info:doi/10.1039%2Fd0ta09319j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon