Deep Radiomic Analysis for Predicting Coronavirus Disease 2019 in Computerized Tomography and X-Ray Images
This article proposes to encode the distribution of features learned from a convolutional neural network (CNN) using a Gaussian mixture model (GMM). These parametric features, called GMM-CNN, are derived from chest computed tomography (CT) and X-ray scans of patients with coronavirus disease 2019 (C...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 33; no. 1; pp. 3 - 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2021.3119071 |
Cover
Loading…
Summary: | This article proposes to encode the distribution of features learned from a convolutional neural network (CNN) using a Gaussian mixture model (GMM). These parametric features, called GMM-CNN, are derived from chest computed tomography (CT) and X-ray scans of patients with coronavirus disease 2019 (COVID-19). We use the proposed GMM-CNN features as input to a robust classifier based on random forests (RFs) to differentiate between COVID-19 and other pneumonia cases. Our experiments assess the advantage of GMM-CNN features compared with standard CNN classification on test images. Using an RF classifier (80% samples for training; 20% samples for testing), GMM-CNN features encoded with two mixture components provided a significantly better performance than standard CNN classification (<inline-formula> <tex-math notation="LaTeX">p < 0.05 </tex-math></inline-formula>). Specifically, our method achieved an accuracy in the range of 96.00%-96.70% and an area under the receiver operator characteristic (ROC) curve in the range of 99.29%-99.45%, with the best performance obtained by combining GMM-CNN features from both CT and X-ray images. Our results suggest that the proposed GMM-CNN features could improve the prediction of COVID-19 in chest CT and X-ray scans. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2021.3119071 |