Deep Radiomic Analysis for Predicting Coronavirus Disease 2019 in Computerized Tomography and X-Ray Images

This article proposes to encode the distribution of features learned from a convolutional neural network (CNN) using a Gaussian mixture model (GMM). These parametric features, called GMM-CNN, are derived from chest computed tomography (CT) and X-ray scans of patients with coronavirus disease 2019 (C...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 1; pp. 3 - 11
Main Authors Chaddad, Ahmad, Hassan, Lama, Desrosiers, Christian
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2021.3119071

Cover

Loading…
More Information
Summary:This article proposes to encode the distribution of features learned from a convolutional neural network (CNN) using a Gaussian mixture model (GMM). These parametric features, called GMM-CNN, are derived from chest computed tomography (CT) and X-ray scans of patients with coronavirus disease 2019 (COVID-19). We use the proposed GMM-CNN features as input to a robust classifier based on random forests (RFs) to differentiate between COVID-19 and other pneumonia cases. Our experiments assess the advantage of GMM-CNN features compared with standard CNN classification on test images. Using an RF classifier (80% samples for training; 20% samples for testing), GMM-CNN features encoded with two mixture components provided a significantly better performance than standard CNN classification (<inline-formula> <tex-math notation="LaTeX">p < 0.05 </tex-math></inline-formula>). Specifically, our method achieved an accuracy in the range of 96.00%-96.70% and an area under the receiver operator characteristic (ROC) curve in the range of 99.29%-99.45%, with the best performance obtained by combining GMM-CNN features from both CT and X-ray images. Our results suggest that the proposed GMM-CNN features could improve the prediction of COVID-19 in chest CT and X-ray scans.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2021.3119071