Cross-Subject and Cross-Modal Transfer for Generalized Abnormal Gait Pattern Recognition

For abnormal gait recognition, pattern-specific features indicating abnormalities are interleaved with the subject-specific differences representing biometric traits. Deep representations are, therefore, prone to overfitting, and the models derived cannot generalize well to new subjects. Furthermore...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 2; pp. 546 - 560
Main Authors Gu, Xiao, Guo, Yao, Deligianni, Fani, Lo, Benny, Yang, Guang-Zhong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For abnormal gait recognition, pattern-specific features indicating abnormalities are interleaved with the subject-specific differences representing biometric traits. Deep representations are, therefore, prone to overfitting, and the models derived cannot generalize well to new subjects. Furthermore, there is limited availability of abnormal gait data obtained from precise Motion Capture (Mocap) systems because of regulatory issues and slow adaptation of new technologies in health care. On the other hand, data captured from markerless vision sensors or wearable sensors can be obtained in home environments, but noises from such devices may prevent the effective extraction of relevant features. To address these challenges, we propose a cascade of deep architectures that can encode cross-modal and cross-subject transfer for abnormal gait recognition. Cross-modal transfer maps noisy data obtained from RGBD and wearable sensors to accurate 4-D representations of the lower limb and joints obtained from the Mocap system. Subsequently, cross-subject transfer allows disentangling subject-specific from abnormal pattern-specific gait features based on a multiencoder autoencoder architecture. To validate the proposed methodology, we obtained multimodal gait data based on a multicamera motion capture system along with synchronized recordings of electromyography (EMG) data and 4-D skeleton data extracted from a single RGBD camera. Classification accuracy was improved significantly in both Mocap and noisy modalities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.3009448