Freezing of glycerol-water mixtures under pressure

We investigated freezing of pure glycerol as well as glycerol-water (GW) mixtures with 3:1 and 3:2 volume fractions as a function of pressure in the 0-10 GPa range by ruby fluorescence spectroscopy and neutron scattering. We find that the glass transition pressure increases from 5.5 GPa for pure gly...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 24; no. 32; pp. 325103, 1 - 325103
Main Authors Klotz, S, Takemura, K, Strässle, Th, Hansen, Th
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 15.08.2012
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigated freezing of pure glycerol as well as glycerol-water (GW) mixtures with 3:1 and 3:2 volume fractions as a function of pressure in the 0-10 GPa range by ruby fluorescence spectroscopy and neutron scattering. We find that the glass transition pressure increases from 5.5 GPa for pure glycerol to 6.5 GPa for the 3:1 GW mixture, with unusually small pressure gradients above. For higher water concentrations close to 3:2, phase separation occurs above 2 GPa where most of the water is expelled in the form of ice VII. The results suggest that glycerol is able to effectively hydrogen bond not more than 2.5 H2O molecules per glycerol, which seems to support conclusions from molecular dynamics simulations. The data indicate that these fluids could become important as pressure transmitting media for neutron scattering in the 0-7 GPa range, including at low temperatures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/24/32/325103