Deciphering signatures of natural selection via deep learning
Abstract Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which c...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
20.09.2022
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 1467-5463 1477-4054 1477-4054 |
DOI | 10.1093/bib/bbac354 |
Cover
Abstract | Abstract
Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset. |
---|---|
AbstractList | Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset. Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset.Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset. Abstract Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset. |
Author | Gaggiotti, Oscar E Qin, Xinghu Chiang, Charleston W K |
Author_xml | – sequence: 1 givenname: Xinghu orcidid: 0000-0003-2351-3610 surname: Qin fullname: Qin, Xinghu email: qin.xinghu@163.com – sequence: 2 givenname: Charleston W K surname: Chiang fullname: Chiang, Charleston W K email: Charleston.Chiang@med.usc.edu – sequence: 3 givenname: Oscar E surname: Gaggiotti fullname: Gaggiotti, Oscar E email: oeg@st-andrews.ac.uk |
BookMark | eNp9kUtr3DAUhUVJaR7NKn_AECiB4kYaybr2ooGQPiHQTbsWelxNFDySI9mB_vtqOpNFQ-hKF_Sdcx_nmBzEFJGQM0Y_MDrwSxPMpTHa8k68IkdMALSCduJgW0toOyH5ITku5Z7SFYWevSGHXNJOgpBH5OMntGG6wxziuilhHfW8ZCxN8s3fUo9NwRHtHFJsHoNuHOLUjKhzrIq35LXXY8HT_XtCfn35_PPmW3v74-v3m-vb1goGc2u8tL3xjkvHOt8hN0NvwXaeaYMWHPNonBs0105aQVcOPGDfeeBaD1QyfkKudr7TYjboLMa5TqamHDY6_1ZJB_XvTwx3ap0e1SB6AEqrwcXeIKeHBcusNqFYHEcdMS1FrYAOwPsKV_T8GXqflhzrepViwCVI3leK7SibUykZvbJh1tsr1f5hVIyqbTiqhqP24VTN-2eapwVept_t6LRM_wX_ALd-oYw |
CitedBy_id | crossref_primary_10_1093_bib_bbaf022 crossref_primary_10_1093_nar_gkae1027 crossref_primary_10_1093_genetics_iyae024 crossref_primary_10_1093_molbev_msae242 crossref_primary_10_1038_s41576_023_00636_3 crossref_primary_10_1093_gbe_evad008 crossref_primary_10_1093_bioinformatics_btac765 |
Cites_doi | 10.1371/journal.pcbi.1002822 10.1161/STROKEAHA.113.002707 10.1016/j.ecolmodel.2004.03.013 10.1086/283401 10.1534/genetics.112.147231 10.1111/1755-0998.13379 10.1038/s41576-019-0127-1 10.1111/1755-0998.12906 10.1038/sj.hdy.6800901 10.1371/journal.pcbi.1004845 10.1093/bib/bbac202 10.1371/journal.pgen.1002695 10.1038/nature07331 10.1111/j.1558-5646.2009.00779.x 10.1016/S0304-3800(02)00064-9 10.1016/j.tig.2017.12.005 10.1038/nature01140 10.1111/1467-9868.00346 10.1016/j.cub.2008.07.049 10.1093/bioinformatics/btr509 10.1016/S0893-6080(97)00010-5 10.1093/molbev/msy224 10.1186/s12859-019-2927-x 10.1038/ng.2285 10.1111/2041-210X.12418 10.1002/sim.8743 10.1371/journal.pbio.0040072 10.1534/genetics.118.301687 10.1111/1755-0998.13224 10.1534/genetics.117.300489 10.1038/ng.3043 10.1093/molbev/msv334 10.1093/genetics/74.1.175 10.1038/ng.548 10.1126/science.aag0776 10.1086/281792 10.1038/73163 10.1186/s12864-019-5992-7 10.1111/1365-2745.12955 10.1016/0893-6080(89)90020-8 10.1534/genetics.110.114819 10.1016/j.jneuroim.2010.01.003 10.1086/282683 10.1016/S0304-3800(02)00257-0 10.1093/molbev/mst063 10.1167/tvst.10.2.29 10.1111/1755-0998.12592 10.1371/journal.pone.0051954 10.1109/72.97934 10.1101/gr.100545.109 10.1038/hdy.2015.93 10.1126/science.1124309 10.1038/s41431-021-00938-2 10.1016/j.ajhg.2008.08.005 10.1007/s11004-020-09861-6 10.1016/j.tranon.2018.04.008 10.1016/j.ajhg.2020.05.014 10.1086/282562 10.1016/0920-5489(94)90017-5 10.7554/eLife.54507 10.1038/ng.2368 10.1093/molbev/msy170 10.1086/282765 10.1086/282452 10.1109/TCBB.2021.3108695 10.1038/s41588-019-0484-x |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. 2022 The Author(s) 2022. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. 2022 – notice: The Author(s) 2022. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbac354 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | PMC9487700 10_1093_bib_bbac354 10.1093/bib/bbac354 |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: R35GM142783 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP AAVLN ABDBF ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX ABEJV ABGNP ABPQP ABXZS ACUHS ACUXJ AHGBF AHQJS ALXQX AMNDL ANAKG CITATION JXSIZ 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 77I 7X8 5PM |
ID | FETCH-LOGICAL-c417t-bf6c8bfd36d15f5e3b98c7c5f1abec7d1febdd9a3ad6c402d7f7e85f73aa90613 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 18:39:53 EDT 2025 Fri Sep 05 13:43:15 EDT 2025 Mon Jun 30 08:50:17 EDT 2025 Tue Jul 01 03:39:42 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Wed Aug 28 03:18:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | deep learning signatures of natural selection genome-wide association studies genome scan |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-bf6c8bfd36d15f5e3b98c7c5f1abec7d1febdd9a3ad6c402d7f7e85f73aa90613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2351-3610 |
OpenAccessLink | https://dx.doi.org/10.1093/bib/bbac354 |
PMID | 36056746 |
PQID | 2717367638 |
PQPubID | 26846 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9487700 proquest_miscellaneous_2709738877 proquest_journals_2717367638 crossref_citationtrail_10_1093_bib_bbac354 crossref_primary_10_1093_bib_bbac354 oup_primary_10_1093_bib_bbac354 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-20 |
PublicationDateYYYYMMDD | 2022-09-20 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationYear | 2022 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Riedmiller (2022092013230303400_ref74) 1994; 16 Fariello (2022092013230303400_ref20) 2013; 193 Lao (2022092013230303400_ref43) 2008; 18 Battey (2022092013230303400_ref64) 2020; 9 Luu (2022092013230303400_ref41) 2017; 17 Racimo (2022092013230303400_ref6) 2018; 208 Ia (2022092013230303400_ref72) 2016 Sabeti (2022092013230303400_ref15) 2002; 419 Novembre (2022092013230303400_ref44) 2008; 456 Granovsky (2022092013230303400_ref51) 2000; 6 Prout (2022092013230303400_ref61) 1968; 102 Bulmer (2022092013230303400_ref58) 1972; 106 Levins (2022092013230303400_ref60) 1966; 100 Storey (2022092013230303400_ref77) 2002; 64 De Villemereuil (2022092013230303400_ref22) 2015; 6 Filzmoser (2022092013230303400_ref76) 2020; 52 Chiang (2022092013230303400_ref45) 2018; 35 Nelson (2022092013230303400_ref47) 2008; 83 Voight (2022092013230303400_ref17) 2006; 4 Speidel (2022092013230303400_ref7) 2019; 51 Levene (2022092013230303400_ref59) 1953; 87 Turchin (2022092013230303400_ref8) 2012; 44 Villemereuil (2022092013230303400_ref29) 2016; 116 Olden (2022092013230303400_ref33) 2002; 154 Flagel (2022092013230303400_ref65) 2019; 36 Attali (2022092013230303400_ref37) 1997; 10 Maynard (2022092013230303400_ref63) 1970; 104 Li (2022092013230303400_ref79) 2011; 27 Duforet-Frebourg (2022092013230303400_ref14) 2016; 33 Yang (2022092013230303400_ref34) 2012; 44 Comuzzie (2022092013230303400_ref57) 2012; 7 Schrider (2022092013230303400_ref70) 2018; 34 Pal (2022092013230303400_ref38) 1992 Chen (2022092013230303400_ref10) 2020; 107 Gevrey (2022092013230303400_ref73) 2003; 160 Jiang (2022092013230303400_ref67) 2017; 27 Sheehan (2022092013230303400_ref36) 2016; 12 Lewontin (2022092013230303400_ref50) 1973; 74 Villemereuil (2022092013230303400_ref30) 2018; 106 Nalls (2022092013230303400_ref55) 2014; 46 Bush (2022092013230303400_ref1) 2012; 8 Yang (2022092013230303400_ref48) 2012; 44 Stephan (2022092013230303400_ref18) 2007; 98 Qin (2022092013230303400_ref46) 2022; 23 Torada (2022092013230303400_ref26) 2019 Hornik (2022092013230303400_ref31) 1989; 2 Coop (2022092013230303400_ref21) 2010; 185 Brynedal (2022092013230303400_ref52) 2010; 220 Tam (2022092013230303400_ref3) 2019; 20 Specht (2022092013230303400_ref35) 1991; 2 Gevrey (2022092013230303400_ref39) 2003; 160 Forester (2022092013230303400_ref25) 2018 Chen (2022092013230303400_ref19) 2010; 20 Endler (2022092013230303400_ref42) 1977 Villemereuil (2022092013230303400_ref11) 2015; 6 Yan (2022092013230303400_ref27) 2021; 10 Isildak (2022092013230303400_ref69) 2021; 21 Chen (2022092013230303400_ref9) 2021; 29 Sabeti (2022092013230303400_ref49) 2002; 419 Strobeck (2022092013230303400_ref62) 1979; 113 Gaggiotti (2022092013230303400_ref13) 2009; 63 Olden (2022092013230303400_ref40) 2004; 178 Kang (2022092013230303400_ref2) 2010; 42 Wang (2022092013230303400_ref53) 2018; 11 Edge (2022092013230303400_ref4) 2019; 211 Forester (2022092013230303400_ref24) 2016 Sabeti (2022092013230303400_ref16) 2006; 312 Sun (2022092013230303400_ref28) 2020; 39 Sanchez (2022092013230303400_ref68) 2021; 21 Frichot (2022092013230303400_ref12) 2013; 30 Capblancq (2022092013230303400_ref23) 2018; 18 Akesson (2022092013230303400_ref66) 2021 Garson (2022092013230303400_ref75) 1991; 6 Kaler (2022092013230303400_ref78) 2019; 20 Field (2022092013230303400_ref5) 2016; 354 Kuhn (2022092013230303400_ref32) 2014 Fox (2022092013230303400_ref54) 2012; 8 Dichgans (2022092013230303400_ref56) 2014; 45 Yang (2022092013230303400_ref71) 1998 |
References_xml | – volume: 8 start-page: e1002822 year: 2012 ident: 2022092013230303400_ref1 article-title: Chapter 11: genome-wide association studies publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002822 – volume: 45 start-page: 24 year: 2014 ident: 2022092013230303400_ref56 article-title: Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants publication-title: Stroke doi: 10.1161/STROKEAHA.113.002707 – volume: 178 start-page: 389 year: 2004 ident: 2022092013230303400_ref40 article-title: An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2004.03.013 – volume: 113 start-page: 439 year: 1979 ident: 2022092013230303400_ref62 article-title: Haploid selection withn alleles in m niches publication-title: Amer Natur doi: 10.1086/283401 – volume: 193 start-page: 929 year: 2013 ident: 2022092013230303400_ref20 article-title: Detecting signatures of selection through haplotype differentiation among hierarchically structured populations publication-title: Genetics doi: 10.1534/genetics.112.147231 – volume: 21 start-page: 2706 year: 2021 ident: 2022092013230303400_ref69 article-title: Distinguishing between recent balancing selection and incomplete sweep using deep neural networks publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.13379 – volume: 20 start-page: 467 year: 2019 ident: 2022092013230303400_ref3 article-title: Benefits and limitations of genome-wide association studies publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0127-1 – volume: 18 start-page: 1223 year: 2018 ident: 2022092013230303400_ref23 article-title: Evaluation of redundancy analysis to identify signatures of local adaptation publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.12906 – volume: 6 start-page: 46 year: 1991 ident: 2022092013230303400_ref75 article-title: Interpreting neural network connection weights publication-title: Artif Intell Exp – volume: 98 start-page: 65 year: 2007 ident: 2022092013230303400_ref18 article-title: The recent demographic and adaptive history of Drosophila melanogaster publication-title: Heredity doi: 10.1038/sj.hdy.6800901 – volume: 12 year: 2016 ident: 2022092013230303400_ref36 article-title: Deep learning for population genetic inference publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004845 – volume: 23 year: 2022 ident: 2022092013230303400_ref46 article-title: KLFDAPC: a supervised machine learning approach for spatial genetic structure analysis publication-title: Brief Bioinform doi: 10.1093/bib/bbac202 – volume: 8 start-page: e1002695 year: 2012 ident: 2022092013230303400_ref54 article-title: Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002695 – volume: 456 start-page: 98 year: 2008 ident: 2022092013230303400_ref44 article-title: Genes mirror geography within Europe publication-title: Nature doi: 10.1038/nature07331 – volume: 63 start-page: 2939 year: 2009 ident: 2022092013230303400_ref13 article-title: Disentangling the effects of evolutionary, demographic, and environmental factors influencing the genetic structure of natural populations: Atlantic herring as a case study publication-title: Evolution doi: 10.1111/j.1558-5646.2009.00779.x – volume: 154 start-page: 135 year: 2002 ident: 2022092013230303400_ref33 article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks publication-title: Ecol Model doi: 10.1016/S0304-3800(02)00064-9 – volume: 34 start-page: 301 year: 2018 ident: 2022092013230303400_ref70 article-title: Supervised machine learning for population genetics: a new paradigm publication-title: Trends Genet doi: 10.1016/j.tig.2017.12.005 – volume: 419 start-page: 832 year: 2002 ident: 2022092013230303400_ref15 article-title: Detecting recent positive selection in the human genome from haplotype structure publication-title: Nature doi: 10.1038/nature01140 – volume: 64 start-page: 479 year: 2002 ident: 2022092013230303400_ref77 article-title: A direct approach to false discovery rates publication-title: J R Stat Soc Series B Stat Methodology doi: 10.1111/1467-9868.00346 – volume: 18 start-page: 1241 year: 2008 ident: 2022092013230303400_ref43 article-title: Correlation between genetic and geographic structure in Europe publication-title: Curr Biol doi: 10.1016/j.cub.2008.07.049 – volume: 27 start-page: 2987 year: 2011 ident: 2022092013230303400_ref79 article-title: A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr509 – volume: 10 start-page: 1069 year: 1997 ident: 2022092013230303400_ref37 article-title: Approximations of functions by a multilayer perceptron: a new approach publication-title: Neural Netw doi: 10.1016/S0893-6080(97)00010-5 – volume: 36 start-page: 220 year: 2019 ident: 2022092013230303400_ref65 article-title: The unreasonable effectiveness of convolutional neural networks in population genetic inference publication-title: Mol Biol Evol doi: 10.1093/molbev/msy224 – start-page: 104 volume-title: Molecular ecology year: 2016 ident: 2022092013230303400_ref24 article-title: Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes – volume-title: BMC bioinformatics year: 2019 ident: 2022092013230303400_ref26 article-title: ImaGene: a convolutional neural network to quantify natural selection from genomic data doi: 10.1186/s12859-019-2927-x – volume: 44 start-page: 725 year: 2012 ident: 2022092013230303400_ref48 article-title: A model-based approach for analysis of spatial structure in genetic data publication-title: Nat Genet doi: 10.1038/ng.2285 – volume: 6 start-page: 1248 year: 2015 ident: 2022092013230303400_ref22 article-title: A new FST-based method to uncover local adaptation using environmental variables publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12418 – volume: 39 start-page: 4605 year: 2020 ident: 2022092013230303400_ref28 article-title: Genome-wide association study-based deep learning for survival prediction publication-title: Stat Med doi: 10.1002/sim.8743 – volume: 4 start-page: e72 year: 2006 ident: 2022092013230303400_ref17 article-title: A map of recent positive selection in the human genome publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040072 – volume: 211 start-page: 235 year: 2019 ident: 2022092013230303400_ref4 article-title: Reconstructing the history of polygenic scores using coalescent trees publication-title: Genetics doi: 10.1534/genetics.118.301687 – volume: 21 start-page: 2645 year: 2021 ident: 2022092013230303400_ref68 article-title: Deep learning for population size history inference: design, comparison and combination with approximate Bayesian computation publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.13224 – volume-title: Geographic variation, speciation and clines year: 1977 ident: 2022092013230303400_ref42 – volume: 208 start-page: 1565 year: 2018 ident: 2022092013230303400_ref6 article-title: Detecting polygenic adaptation in admixture graphs publication-title: Genetics doi: 10.1534/genetics.117.300489 – volume: 46 start-page: 989 year: 2014 ident: 2022092013230303400_ref55 article-title: Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease publication-title: Nat Genet doi: 10.1038/ng.3043 – volume: 33 start-page: 1082 year: 2016 ident: 2022092013230303400_ref14 article-title: Detecting genomic signatures of natural selection with principal component analysis: application to the 1000 genomes data publication-title: Mol Biol Evol doi: 10.1093/molbev/msv334 – volume: 74 start-page: 175 year: 1973 ident: 2022092013230303400_ref50 article-title: Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms publication-title: Genetics doi: 10.1093/genetics/74.1.175 – volume: 44 start-page: 725 year: 2012 ident: 2022092013230303400_ref34 article-title: A model-based approach for analysis of spatial structure in genetic data publication-title: Nat Genet doi: 10.1038/ng.2285 – volume: 42 start-page: 348 year: 2010 ident: 2022092013230303400_ref2 article-title: Variance component model to account for sample structure in genome-wide association studies publication-title: Nat Genet doi: 10.1038/ng.548 – volume: 6 start-page: 1248 year: 2015 ident: 2022092013230303400_ref11 article-title: A new F-ST-based method to uncover local adaptation using environmental variables publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12418 – start-page: 2215 volume-title: Molecular Ecology year: 2018 ident: 2022092013230303400_ref25 article-title: Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations – volume: 354 start-page: 760 year: 2016 ident: 2022092013230303400_ref5 article-title: Detection of human adaptation during the past 2000 years publication-title: Science doi: 10.1126/science.aag0776 – volume: 87 start-page: 331 year: 1953 ident: 2022092013230303400_ref59 article-title: Genetic equilibrium when more than one ecological niche is available publication-title: Amer Natur doi: 10.1086/281792 – volume: 6 start-page: 306 year: 2000 ident: 2022092013230303400_ref51 article-title: Suppression of tumor growth and metastasis in Mgat5-deficient mice publication-title: Nat Med doi: 10.1038/73163 – volume: 20 start-page: 1 year: 2019 ident: 2022092013230303400_ref78 article-title: Estimation of a significance threshold for genome-wide association studies publication-title: BMC Genomics doi: 10.1186/s12864-019-5992-7 – volume: 419 start-page: 832 year: 2002 ident: 2022092013230303400_ref49 article-title: Detecting recent positive selection in the human genome from haplotype structure publication-title: Nature doi: 10.1038/nature01140 – volume: 106 start-page: 1952 year: 2018 ident: 2022092013230303400_ref30 article-title: Patterns of phenotypic plasticity and local adaptation in the wide elevation range of the alpine plant Arabis alpina publication-title: J Ecol doi: 10.1111/1365-2745.12955 – volume: 2 start-page: 359 year: 1989 ident: 2022092013230303400_ref31 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 185 start-page: 1411 year: 2010 ident: 2022092013230303400_ref21 article-title: Using environmental correlations to identify loci underlying local adaptation publication-title: Genetics doi: 10.1534/genetics.110.114819 – volume-title: Multilayer perceptron, fuzzy sets, classifiaction year: 1992 ident: 2022092013230303400_ref38 – volume: 220 start-page: 120 year: 2010 ident: 2022092013230303400_ref52 article-title: MGAT5 alters the severity of multiple sclerosis publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2010.01.003 – volume: 104 start-page: 487 year: 1970 ident: 2022092013230303400_ref63 article-title: Genetic polymorphism in a varied environment publication-title: Amer Natur doi: 10.1086/282683 – volume: 160 start-page: 249 year: 2003 ident: 2022092013230303400_ref73 article-title: Review and comparison of methods to study the contribution of variables in artificial neural network models publication-title: Ecol Model doi: 10.1016/S0304-3800(02)00257-0 – volume: 30 start-page: 1687 year: 2013 ident: 2022092013230303400_ref12 article-title: Testing for associations between loci and environmental gradients using latent factor mixed models publication-title: Mol Biol Evol doi: 10.1093/molbev/mst063 – volume: 160 start-page: 249 year: 2003 ident: 2022092013230303400_ref39 article-title: Review and comparison of methods to study the contribution of variables in artificial neural network models publication-title: Ecol Model doi: 10.1016/S0304-3800(02)00257-0 – volume-title: Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville year: 2016 ident: 2022092013230303400_ref72 – volume: 10 start-page: 29 year: 2021 ident: 2022092013230303400_ref27 article-title: Genome-wide association studies-based machine learning for prediction of age-related macular degeneration risk publication-title: Transl Vis Sci Technol doi: 10.1167/tvst.10.2.29 – volume: 17 start-page: 67 year: 2017 ident: 2022092013230303400_ref41 article-title: Pcadapt: an R package to perform genome scans for selection based on principal component analysis publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.12592 – volume: 7 start-page: e51954 year: 2012 ident: 2022092013230303400_ref57 article-title: Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population publication-title: PloS One doi: 10.1371/journal.pone.0051954 – volume: 2 year: 1991 ident: 2022092013230303400_ref35 article-title: A general regression neural network publication-title: IEEE transactions on neural networks doi: 10.1109/72.97934 – year: 2014 ident: 2022092013230303400_ref32 article-title: Futility analysis in the cross-validation of machine learning models publication-title: arXiv:14056974 – volume: 20 start-page: 393 year: 2010 ident: 2022092013230303400_ref19 article-title: Population differentiation as a test for selective sweeps publication-title: Genome Res doi: 10.1101/gr.100545.109 – volume: 116 start-page: 249 year: 2016 ident: 2022092013230303400_ref29 article-title: Common garden experiments in the genomic era: new perspectives and opportunities publication-title: Heredity doi: 10.1038/hdy.2015.93 – volume: 312 start-page: 1614 year: 2006 ident: 2022092013230303400_ref16 article-title: Positive natural selection in the human lineage publication-title: Science doi: 10.1126/science.1124309 – volume: 27 start-page: 1595 year: 2017 ident: 2022092013230303400_ref67 article-title: Learning summary statistic for approximate Bayesian computation via deep neural network publication-title: Stat Sin – volume: 29 start-page: 1542 year: 2021 ident: 2022092013230303400_ref9 article-title: Allele frequency differentiation at height-associated SNPs among continental human populations publication-title: Eur J Hum Genet doi: 10.1038/s41431-021-00938-2 – start-page: 548 year: 1998 ident: 2022092013230303400_ref71 publication-title: Model validation and determination for neural network activation function modeling – volume: 83 start-page: 347 year: 2008 ident: 2022092013230303400_ref47 article-title: The population reference sample, POPRES: a resource for population, disease, and pharmacological genetics research publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2008.08.005 – volume: 52 start-page: 1049 year: 2020 ident: 2022092013230303400_ref76 article-title: Multivariate outlier detection in applied data analysis: global, local, compositional and Cellwise outliers publication-title: Math Geosci doi: 10.1007/s11004-020-09861-6 – volume: 11 start-page: 900 year: 2018 ident: 2022092013230303400_ref53 article-title: Hydrogen sulfide demonstrates promising antitumor efficacy in gastric carcinoma by targeting MGAT5 publication-title: Transl Oncol doi: 10.1016/j.tranon.2018.04.008 – volume: 107 start-page: 60 year: 2020 ident: 2022092013230303400_ref10 article-title: Evidence of polygenic adaptation in Sardinia at height-associated loci ascertained from the biobank Japan publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2020.05.014 – volume: 102 start-page: 493 year: 1968 ident: 2022092013230303400_ref61 article-title: Sufficient conditions for multiple niche polymorphism publication-title: Amer Natur doi: 10.1086/282562 – volume: 16 start-page: 265 year: 1994 ident: 2022092013230303400_ref74 article-title: Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms publication-title: Comput Standards Interf doi: 10.1016/0920-5489(94)90017-5 – volume: 9 year: 2020 ident: 2022092013230303400_ref64 article-title: Predicting geographic location from genetic variation with deep neural networks publication-title: Elife doi: 10.7554/eLife.54507 – volume: 44 start-page: 1015 year: 2012 ident: 2022092013230303400_ref8 article-title: Evidence of widespread selection on standing variation in Europe at height-associated SNPs publication-title: Nat Genet doi: 10.1038/ng.2368 – volume: 35 start-page: 2736 year: 2018 ident: 2022092013230303400_ref45 article-title: A comprehensive map of genetic variation in the world’s largest ethnic group—Han Chinese publication-title: Mol Biol Evol doi: 10.1093/molbev/msy170 – volume: 106 start-page: 254 year: 1972 ident: 2022092013230303400_ref58 article-title: Multiple niche polymorphism publication-title: Amer Natur doi: 10.1086/282765 – volume: 100 start-page: 585 year: 1966 ident: 2022092013230303400_ref60 article-title: The maintenance of genetic polymorphism in a spatially heterogeneous environment: variations on a theme by Howard Levene publication-title: Amer Natur doi: 10.1086/282452 – year: 2021 ident: 2022092013230303400_ref66 article-title: Convolutional neural networks as summary statistics for approximate Bayesian computation publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2021.3108695 – volume: 51 start-page: 1321 year: 2019 ident: 2022092013230303400_ref7 article-title: A method for genome-wide genealogy estimation for thousands of samples publication-title: Nat Genet doi: 10.1038/s41588-019-0484-x |
SSID | ssj0020781 |
Score | 2.3866801 |
Snippet | Abstract
Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it... Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains... |
SourceID | pubmedcentral proquest crossref oup |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Datasets Deep learning Genes Natural selection Principal components analysis Problem Solving Protocol Redundancy Signatures |
Title | Deciphering signatures of natural selection via deep learning |
URI | https://www.proquest.com/docview/2717367638 https://www.proquest.com/docview/2709738877 https://pubmed.ncbi.nlm.nih.gov/PMC9487700 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5EELyIT4xWjdCTEJpkk-zm4EHUUgT10kJvYZ81IGkxreC_dyZJg5Git8DOkPDtZmeGmfmGkL40Acc5U57g0nqREtrjgkqPg3dNfaEojbF3-PklGU2ip2k8bQpkyw0p_JQOZC4HUoJajLSfYH7xOI9fp21chXw1dRMR85DdvWnD-6XbMTydZjb0KbsVkT9MzHCf7DW-oXtXb-YB2TLFIdmpp0V-HZHbB6PyRdWvN3Ox7qLi5CzduXWrR1Atq6k2ALX7mQtXG7Nwm7EQs2MyGT6O70deM_3AU1HAlp60iQL8NE10ENvYUJlyxVRsAwG4Mx1YI7VOBRU6URAFamaZ4bFlVIgUrfQJ2S7mhTklLuXW8jQKQyYgEraaJ2kkKITRsVU65NIhN2toMtVQg-OEivesTlHTDHDMGhwd0m-FFzUjxmaxK8D4b4neGv-s-XHKLMSqgAQuPe6Q63YZjjzmMURh5iuUQY4huB2ZQ1hn39rXIWl2d6XI3yry7BQiNOb7Z_9-3jnZDbHVATNQfo9sLz9W5gIckKW8rI7fNwoL3TQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+signatures+of+natural+selection+via+deep+learning&rft.jtitle=Briefings+in+bioinformatics&rft.au=Qin%2C+Xinghu&rft.au=Chiang%2C+Charleston+W+K&rft.au=Gaggiotti%2C+Oscar+E&rft.date=2022-09-20&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbac354&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac354 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |