Deciphering signatures of natural selection via deep learning

Abstract Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which c...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 5
Main Authors Qin, Xinghu, Chiang, Charleston W K, Gaggiotti, Oscar E
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 20.09.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1467-5463
1477-4054
1477-4054
DOI10.1093/bib/bbac354

Cover

Abstract Abstract Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset.
AbstractList Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset.
Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset.Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset.
Abstract Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset.
Author Gaggiotti, Oscar E
Qin, Xinghu
Chiang, Charleston W K
Author_xml – sequence: 1
  givenname: Xinghu
  orcidid: 0000-0003-2351-3610
  surname: Qin
  fullname: Qin, Xinghu
  email: qin.xinghu@163.com
– sequence: 2
  givenname: Charleston W K
  surname: Chiang
  fullname: Chiang, Charleston W K
  email: Charleston.Chiang@med.usc.edu
– sequence: 3
  givenname: Oscar E
  surname: Gaggiotti
  fullname: Gaggiotti, Oscar E
  email: oeg@st-andrews.ac.uk
BookMark eNp9kUtr3DAUhUVJaR7NKn_AECiB4kYaybr2ooGQPiHQTbsWelxNFDySI9mB_vtqOpNFQ-hKF_Sdcx_nmBzEFJGQM0Y_MDrwSxPMpTHa8k68IkdMALSCduJgW0toOyH5ITku5Z7SFYWevSGHXNJOgpBH5OMntGG6wxziuilhHfW8ZCxN8s3fUo9NwRHtHFJsHoNuHOLUjKhzrIq35LXXY8HT_XtCfn35_PPmW3v74-v3m-vb1goGc2u8tL3xjkvHOt8hN0NvwXaeaYMWHPNonBs0105aQVcOPGDfeeBaD1QyfkKudr7TYjboLMa5TqamHDY6_1ZJB_XvTwx3ap0e1SB6AEqrwcXeIKeHBcusNqFYHEcdMS1FrYAOwPsKV_T8GXqflhzrepViwCVI3leK7SibUykZvbJh1tsr1f5hVIyqbTiqhqP24VTN-2eapwVept_t6LRM_wX_ALd-oYw
CitedBy_id crossref_primary_10_1093_bib_bbaf022
crossref_primary_10_1093_nar_gkae1027
crossref_primary_10_1093_genetics_iyae024
crossref_primary_10_1093_molbev_msae242
crossref_primary_10_1038_s41576_023_00636_3
crossref_primary_10_1093_gbe_evad008
crossref_primary_10_1093_bioinformatics_btac765
Cites_doi 10.1371/journal.pcbi.1002822
10.1161/STROKEAHA.113.002707
10.1016/j.ecolmodel.2004.03.013
10.1086/283401
10.1534/genetics.112.147231
10.1111/1755-0998.13379
10.1038/s41576-019-0127-1
10.1111/1755-0998.12906
10.1038/sj.hdy.6800901
10.1371/journal.pcbi.1004845
10.1093/bib/bbac202
10.1371/journal.pgen.1002695
10.1038/nature07331
10.1111/j.1558-5646.2009.00779.x
10.1016/S0304-3800(02)00064-9
10.1016/j.tig.2017.12.005
10.1038/nature01140
10.1111/1467-9868.00346
10.1016/j.cub.2008.07.049
10.1093/bioinformatics/btr509
10.1016/S0893-6080(97)00010-5
10.1093/molbev/msy224
10.1186/s12859-019-2927-x
10.1038/ng.2285
10.1111/2041-210X.12418
10.1002/sim.8743
10.1371/journal.pbio.0040072
10.1534/genetics.118.301687
10.1111/1755-0998.13224
10.1534/genetics.117.300489
10.1038/ng.3043
10.1093/molbev/msv334
10.1093/genetics/74.1.175
10.1038/ng.548
10.1126/science.aag0776
10.1086/281792
10.1038/73163
10.1186/s12864-019-5992-7
10.1111/1365-2745.12955
10.1016/0893-6080(89)90020-8
10.1534/genetics.110.114819
10.1016/j.jneuroim.2010.01.003
10.1086/282683
10.1016/S0304-3800(02)00257-0
10.1093/molbev/mst063
10.1167/tvst.10.2.29
10.1111/1755-0998.12592
10.1371/journal.pone.0051954
10.1109/72.97934
10.1101/gr.100545.109
10.1038/hdy.2015.93
10.1126/science.1124309
10.1038/s41431-021-00938-2
10.1016/j.ajhg.2008.08.005
10.1007/s11004-020-09861-6
10.1016/j.tranon.2018.04.008
10.1016/j.ajhg.2020.05.014
10.1086/282562
10.1016/0920-5489(94)90017-5
10.7554/eLife.54507
10.1038/ng.2368
10.1093/molbev/msy170
10.1086/282765
10.1086/282452
10.1109/TCBB.2021.3108695
10.1038/s41588-019-0484-x
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
The Author(s) 2022. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
– notice: The Author(s) 2022. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbac354
DatabaseName Oxford Journals Open Access Collection
CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC9487700
10_1093_bib_bbac354
10.1093/bib/bbac354
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: R35GM142783
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABDBF
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
ABEJV
ABGNP
ABPQP
ABXZS
ACUHS
ACUXJ
AHGBF
AHQJS
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
77I
7X8
5PM
ID FETCH-LOGICAL-c417t-bf6c8bfd36d15f5e3b98c7c5f1abec7d1febdd9a3ad6c402d7f7e85f73aa90613
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 18:39:53 EDT 2025
Fri Sep 05 13:43:15 EDT 2025
Mon Jun 30 08:50:17 EDT 2025
Tue Jul 01 03:39:42 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Wed Aug 28 03:18:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
signatures of natural selection
genome-wide association studies
genome scan
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-bf6c8bfd36d15f5e3b98c7c5f1abec7d1febdd9a3ad6c402d7f7e85f73aa90613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2351-3610
OpenAccessLink https://dx.doi.org/10.1093/bib/bbac354
PMID 36056746
PQID 2717367638
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9487700
proquest_miscellaneous_2709738877
proquest_journals_2717367638
crossref_citationtrail_10_1093_bib_bbac354
crossref_primary_10_1093_bib_bbac354
oup_primary_10_1093_bib_bbac354
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-20
PublicationDateYYYYMMDD 2022-09-20
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-20
  day: 20
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Riedmiller (2022092013230303400_ref74) 1994; 16
Fariello (2022092013230303400_ref20) 2013; 193
Lao (2022092013230303400_ref43) 2008; 18
Battey (2022092013230303400_ref64) 2020; 9
Luu (2022092013230303400_ref41) 2017; 17
Racimo (2022092013230303400_ref6) 2018; 208
Ia (2022092013230303400_ref72) 2016
Sabeti (2022092013230303400_ref15) 2002; 419
Novembre (2022092013230303400_ref44) 2008; 456
Granovsky (2022092013230303400_ref51) 2000; 6
Prout (2022092013230303400_ref61) 1968; 102
Bulmer (2022092013230303400_ref58) 1972; 106
Levins (2022092013230303400_ref60) 1966; 100
Storey (2022092013230303400_ref77) 2002; 64
De Villemereuil (2022092013230303400_ref22) 2015; 6
Filzmoser (2022092013230303400_ref76) 2020; 52
Chiang (2022092013230303400_ref45) 2018; 35
Nelson (2022092013230303400_ref47) 2008; 83
Voight (2022092013230303400_ref17) 2006; 4
Speidel (2022092013230303400_ref7) 2019; 51
Levene (2022092013230303400_ref59) 1953; 87
Turchin (2022092013230303400_ref8) 2012; 44
Villemereuil (2022092013230303400_ref29) 2016; 116
Olden (2022092013230303400_ref33) 2002; 154
Flagel (2022092013230303400_ref65) 2019; 36
Attali (2022092013230303400_ref37) 1997; 10
Maynard (2022092013230303400_ref63) 1970; 104
Li (2022092013230303400_ref79) 2011; 27
Duforet-Frebourg (2022092013230303400_ref14) 2016; 33
Yang (2022092013230303400_ref34) 2012; 44
Comuzzie (2022092013230303400_ref57) 2012; 7
Schrider (2022092013230303400_ref70) 2018; 34
Pal (2022092013230303400_ref38) 1992
Chen (2022092013230303400_ref10) 2020; 107
Gevrey (2022092013230303400_ref73) 2003; 160
Jiang (2022092013230303400_ref67) 2017; 27
Sheehan (2022092013230303400_ref36) 2016; 12
Lewontin (2022092013230303400_ref50) 1973; 74
Villemereuil (2022092013230303400_ref30) 2018; 106
Nalls (2022092013230303400_ref55) 2014; 46
Bush (2022092013230303400_ref1) 2012; 8
Yang (2022092013230303400_ref48) 2012; 44
Stephan (2022092013230303400_ref18) 2007; 98
Qin (2022092013230303400_ref46) 2022; 23
Torada (2022092013230303400_ref26) 2019
Hornik (2022092013230303400_ref31) 1989; 2
Coop (2022092013230303400_ref21) 2010; 185
Brynedal (2022092013230303400_ref52) 2010; 220
Tam (2022092013230303400_ref3) 2019; 20
Specht (2022092013230303400_ref35) 1991; 2
Gevrey (2022092013230303400_ref39) 2003; 160
Forester (2022092013230303400_ref25) 2018
Chen (2022092013230303400_ref19) 2010; 20
Endler (2022092013230303400_ref42) 1977
Villemereuil (2022092013230303400_ref11) 2015; 6
Yan (2022092013230303400_ref27) 2021; 10
Isildak (2022092013230303400_ref69) 2021; 21
Chen (2022092013230303400_ref9) 2021; 29
Sabeti (2022092013230303400_ref49) 2002; 419
Strobeck (2022092013230303400_ref62) 1979; 113
Gaggiotti (2022092013230303400_ref13) 2009; 63
Olden (2022092013230303400_ref40) 2004; 178
Kang (2022092013230303400_ref2) 2010; 42
Wang (2022092013230303400_ref53) 2018; 11
Edge (2022092013230303400_ref4) 2019; 211
Forester (2022092013230303400_ref24) 2016
Sabeti (2022092013230303400_ref16) 2006; 312
Sun (2022092013230303400_ref28) 2020; 39
Sanchez (2022092013230303400_ref68) 2021; 21
Frichot (2022092013230303400_ref12) 2013; 30
Capblancq (2022092013230303400_ref23) 2018; 18
Akesson (2022092013230303400_ref66) 2021
Garson (2022092013230303400_ref75) 1991; 6
Kaler (2022092013230303400_ref78) 2019; 20
Field (2022092013230303400_ref5) 2016; 354
Kuhn (2022092013230303400_ref32) 2014
Fox (2022092013230303400_ref54) 2012; 8
Dichgans (2022092013230303400_ref56) 2014; 45
Yang (2022092013230303400_ref71) 1998
References_xml – volume: 8
  start-page: e1002822
  year: 2012
  ident: 2022092013230303400_ref1
  article-title: Chapter 11: genome-wide association studies
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002822
– volume: 45
  start-page: 24
  year: 2014
  ident: 2022092013230303400_ref56
  article-title: Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.002707
– volume: 178
  start-page: 389
  year: 2004
  ident: 2022092013230303400_ref40
  article-title: An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2004.03.013
– volume: 113
  start-page: 439
  year: 1979
  ident: 2022092013230303400_ref62
  article-title: Haploid selection withn alleles in m niches
  publication-title: Amer Natur
  doi: 10.1086/283401
– volume: 193
  start-page: 929
  year: 2013
  ident: 2022092013230303400_ref20
  article-title: Detecting signatures of selection through haplotype differentiation among hierarchically structured populations
  publication-title: Genetics
  doi: 10.1534/genetics.112.147231
– volume: 21
  start-page: 2706
  year: 2021
  ident: 2022092013230303400_ref69
  article-title: Distinguishing between recent balancing selection and incomplete sweep using deep neural networks
  publication-title: Mol Ecol Resour
  doi: 10.1111/1755-0998.13379
– volume: 20
  start-page: 467
  year: 2019
  ident: 2022092013230303400_ref3
  article-title: Benefits and limitations of genome-wide association studies
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0127-1
– volume: 18
  start-page: 1223
  year: 2018
  ident: 2022092013230303400_ref23
  article-title: Evaluation of redundancy analysis to identify signatures of local adaptation
  publication-title: Mol Ecol Resour
  doi: 10.1111/1755-0998.12906
– volume: 6
  start-page: 46
  year: 1991
  ident: 2022092013230303400_ref75
  article-title: Interpreting neural network connection weights
  publication-title: Artif Intell Exp
– volume: 98
  start-page: 65
  year: 2007
  ident: 2022092013230303400_ref18
  article-title: The recent demographic and adaptive history of Drosophila melanogaster
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6800901
– volume: 12
  year: 2016
  ident: 2022092013230303400_ref36
  article-title: Deep learning for population genetic inference
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004845
– volume: 23
  year: 2022
  ident: 2022092013230303400_ref46
  article-title: KLFDAPC: a supervised machine learning approach for spatial genetic structure analysis
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac202
– volume: 8
  start-page: e1002695
  year: 2012
  ident: 2022092013230303400_ref54
  article-title: Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002695
– volume: 456
  start-page: 98
  year: 2008
  ident: 2022092013230303400_ref44
  article-title: Genes mirror geography within Europe
  publication-title: Nature
  doi: 10.1038/nature07331
– volume: 63
  start-page: 2939
  year: 2009
  ident: 2022092013230303400_ref13
  article-title: Disentangling the effects of evolutionary, demographic, and environmental factors influencing the genetic structure of natural populations: Atlantic herring as a case study
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2009.00779.x
– volume: 154
  start-page: 135
  year: 2002
  ident: 2022092013230303400_ref33
  article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks
  publication-title: Ecol Model
  doi: 10.1016/S0304-3800(02)00064-9
– volume: 34
  start-page: 301
  year: 2018
  ident: 2022092013230303400_ref70
  article-title: Supervised machine learning for population genetics: a new paradigm
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2017.12.005
– volume: 419
  start-page: 832
  year: 2002
  ident: 2022092013230303400_ref15
  article-title: Detecting recent positive selection in the human genome from haplotype structure
  publication-title: Nature
  doi: 10.1038/nature01140
– volume: 64
  start-page: 479
  year: 2002
  ident: 2022092013230303400_ref77
  article-title: A direct approach to false discovery rates
  publication-title: J R Stat Soc Series B Stat Methodology
  doi: 10.1111/1467-9868.00346
– volume: 18
  start-page: 1241
  year: 2008
  ident: 2022092013230303400_ref43
  article-title: Correlation between genetic and geographic structure in Europe
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2008.07.049
– volume: 27
  start-page: 2987
  year: 2011
  ident: 2022092013230303400_ref79
  article-title: A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr509
– volume: 10
  start-page: 1069
  year: 1997
  ident: 2022092013230303400_ref37
  article-title: Approximations of functions by a multilayer perceptron: a new approach
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(97)00010-5
– volume: 36
  start-page: 220
  year: 2019
  ident: 2022092013230303400_ref65
  article-title: The unreasonable effectiveness of convolutional neural networks in population genetic inference
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msy224
– start-page: 104
  volume-title: Molecular ecology
  year: 2016
  ident: 2022092013230303400_ref24
  article-title: Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes
– volume-title: BMC bioinformatics
  year: 2019
  ident: 2022092013230303400_ref26
  article-title: ImaGene: a convolutional neural network to quantify natural selection from genomic data
  doi: 10.1186/s12859-019-2927-x
– volume: 44
  start-page: 725
  year: 2012
  ident: 2022092013230303400_ref48
  article-title: A model-based approach for analysis of spatial structure in genetic data
  publication-title: Nat Genet
  doi: 10.1038/ng.2285
– volume: 6
  start-page: 1248
  year: 2015
  ident: 2022092013230303400_ref22
  article-title: A new FST-based method to uncover local adaptation using environmental variables
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12418
– volume: 39
  start-page: 4605
  year: 2020
  ident: 2022092013230303400_ref28
  article-title: Genome-wide association study-based deep learning for survival prediction
  publication-title: Stat Med
  doi: 10.1002/sim.8743
– volume: 4
  start-page: e72
  year: 2006
  ident: 2022092013230303400_ref17
  article-title: A map of recent positive selection in the human genome
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040072
– volume: 211
  start-page: 235
  year: 2019
  ident: 2022092013230303400_ref4
  article-title: Reconstructing the history of polygenic scores using coalescent trees
  publication-title: Genetics
  doi: 10.1534/genetics.118.301687
– volume: 21
  start-page: 2645
  year: 2021
  ident: 2022092013230303400_ref68
  article-title: Deep learning for population size history inference: design, comparison and combination with approximate Bayesian computation
  publication-title: Mol Ecol Resour
  doi: 10.1111/1755-0998.13224
– volume-title: Geographic variation, speciation and clines
  year: 1977
  ident: 2022092013230303400_ref42
– volume: 208
  start-page: 1565
  year: 2018
  ident: 2022092013230303400_ref6
  article-title: Detecting polygenic adaptation in admixture graphs
  publication-title: Genetics
  doi: 10.1534/genetics.117.300489
– volume: 46
  start-page: 989
  year: 2014
  ident: 2022092013230303400_ref55
  article-title: Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease
  publication-title: Nat Genet
  doi: 10.1038/ng.3043
– volume: 33
  start-page: 1082
  year: 2016
  ident: 2022092013230303400_ref14
  article-title: Detecting genomic signatures of natural selection with principal component analysis: application to the 1000 genomes data
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msv334
– volume: 74
  start-page: 175
  year: 1973
  ident: 2022092013230303400_ref50
  article-title: Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms
  publication-title: Genetics
  doi: 10.1093/genetics/74.1.175
– volume: 44
  start-page: 725
  year: 2012
  ident: 2022092013230303400_ref34
  article-title: A model-based approach for analysis of spatial structure in genetic data
  publication-title: Nat Genet
  doi: 10.1038/ng.2285
– volume: 42
  start-page: 348
  year: 2010
  ident: 2022092013230303400_ref2
  article-title: Variance component model to account for sample structure in genome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.548
– volume: 6
  start-page: 1248
  year: 2015
  ident: 2022092013230303400_ref11
  article-title: A new F-ST-based method to uncover local adaptation using environmental variables
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12418
– start-page: 2215
  volume-title: Molecular Ecology
  year: 2018
  ident: 2022092013230303400_ref25
  article-title: Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations
– volume: 354
  start-page: 760
  year: 2016
  ident: 2022092013230303400_ref5
  article-title: Detection of human adaptation during the past 2000 years
  publication-title: Science
  doi: 10.1126/science.aag0776
– volume: 87
  start-page: 331
  year: 1953
  ident: 2022092013230303400_ref59
  article-title: Genetic equilibrium when more than one ecological niche is available
  publication-title: Amer Natur
  doi: 10.1086/281792
– volume: 6
  start-page: 306
  year: 2000
  ident: 2022092013230303400_ref51
  article-title: Suppression of tumor growth and metastasis in Mgat5-deficient mice
  publication-title: Nat Med
  doi: 10.1038/73163
– volume: 20
  start-page: 1
  year: 2019
  ident: 2022092013230303400_ref78
  article-title: Estimation of a significance threshold for genome-wide association studies
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-5992-7
– volume: 419
  start-page: 832
  year: 2002
  ident: 2022092013230303400_ref49
  article-title: Detecting recent positive selection in the human genome from haplotype structure
  publication-title: Nature
  doi: 10.1038/nature01140
– volume: 106
  start-page: 1952
  year: 2018
  ident: 2022092013230303400_ref30
  article-title: Patterns of phenotypic plasticity and local adaptation in the wide elevation range of the alpine plant Arabis alpina
  publication-title: J Ecol
  doi: 10.1111/1365-2745.12955
– volume: 2
  start-page: 359
  year: 1989
  ident: 2022092013230303400_ref31
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 185
  start-page: 1411
  year: 2010
  ident: 2022092013230303400_ref21
  article-title: Using environmental correlations to identify loci underlying local adaptation
  publication-title: Genetics
  doi: 10.1534/genetics.110.114819
– volume-title: Multilayer perceptron, fuzzy sets, classifiaction
  year: 1992
  ident: 2022092013230303400_ref38
– volume: 220
  start-page: 120
  year: 2010
  ident: 2022092013230303400_ref52
  article-title: MGAT5 alters the severity of multiple sclerosis
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2010.01.003
– volume: 104
  start-page: 487
  year: 1970
  ident: 2022092013230303400_ref63
  article-title: Genetic polymorphism in a varied environment
  publication-title: Amer Natur
  doi: 10.1086/282683
– volume: 160
  start-page: 249
  year: 2003
  ident: 2022092013230303400_ref73
  article-title: Review and comparison of methods to study the contribution of variables in artificial neural network models
  publication-title: Ecol Model
  doi: 10.1016/S0304-3800(02)00257-0
– volume: 30
  start-page: 1687
  year: 2013
  ident: 2022092013230303400_ref12
  article-title: Testing for associations between loci and environmental gradients using latent factor mixed models
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst063
– volume: 160
  start-page: 249
  year: 2003
  ident: 2022092013230303400_ref39
  article-title: Review and comparison of methods to study the contribution of variables in artificial neural network models
  publication-title: Ecol Model
  doi: 10.1016/S0304-3800(02)00257-0
– volume-title: Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville
  year: 2016
  ident: 2022092013230303400_ref72
– volume: 10
  start-page: 29
  year: 2021
  ident: 2022092013230303400_ref27
  article-title: Genome-wide association studies-based machine learning for prediction of age-related macular degeneration risk
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.10.2.29
– volume: 17
  start-page: 67
  year: 2017
  ident: 2022092013230303400_ref41
  article-title: Pcadapt: an R package to perform genome scans for selection based on principal component analysis
  publication-title: Mol Ecol Resour
  doi: 10.1111/1755-0998.12592
– volume: 7
  start-page: e51954
  year: 2012
  ident: 2022092013230303400_ref57
  article-title: Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population
  publication-title: PloS One
  doi: 10.1371/journal.pone.0051954
– volume: 2
  year: 1991
  ident: 2022092013230303400_ref35
  article-title: A general regression neural network
  publication-title: IEEE transactions on neural networks
  doi: 10.1109/72.97934
– year: 2014
  ident: 2022092013230303400_ref32
  article-title: Futility analysis in the cross-validation of machine learning models
  publication-title: arXiv:14056974
– volume: 20
  start-page: 393
  year: 2010
  ident: 2022092013230303400_ref19
  article-title: Population differentiation as a test for selective sweeps
  publication-title: Genome Res
  doi: 10.1101/gr.100545.109
– volume: 116
  start-page: 249
  year: 2016
  ident: 2022092013230303400_ref29
  article-title: Common garden experiments in the genomic era: new perspectives and opportunities
  publication-title: Heredity
  doi: 10.1038/hdy.2015.93
– volume: 312
  start-page: 1614
  year: 2006
  ident: 2022092013230303400_ref16
  article-title: Positive natural selection in the human lineage
  publication-title: Science
  doi: 10.1126/science.1124309
– volume: 27
  start-page: 1595
  year: 2017
  ident: 2022092013230303400_ref67
  article-title: Learning summary statistic for approximate Bayesian computation via deep neural network
  publication-title: Stat Sin
– volume: 29
  start-page: 1542
  year: 2021
  ident: 2022092013230303400_ref9
  article-title: Allele frequency differentiation at height-associated SNPs among continental human populations
  publication-title: Eur J Hum Genet
  doi: 10.1038/s41431-021-00938-2
– start-page: 548
  year: 1998
  ident: 2022092013230303400_ref71
  publication-title: Model validation and determination for neural network activation function modeling
– volume: 83
  start-page: 347
  year: 2008
  ident: 2022092013230303400_ref47
  article-title: The population reference sample, POPRES: a resource for population, disease, and pharmacological genetics research
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2008.08.005
– volume: 52
  start-page: 1049
  year: 2020
  ident: 2022092013230303400_ref76
  article-title: Multivariate outlier detection in applied data analysis: global, local, compositional and Cellwise outliers
  publication-title: Math Geosci
  doi: 10.1007/s11004-020-09861-6
– volume: 11
  start-page: 900
  year: 2018
  ident: 2022092013230303400_ref53
  article-title: Hydrogen sulfide demonstrates promising antitumor efficacy in gastric carcinoma by targeting MGAT5
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2018.04.008
– volume: 107
  start-page: 60
  year: 2020
  ident: 2022092013230303400_ref10
  article-title: Evidence of polygenic adaptation in Sardinia at height-associated loci ascertained from the biobank Japan
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2020.05.014
– volume: 102
  start-page: 493
  year: 1968
  ident: 2022092013230303400_ref61
  article-title: Sufficient conditions for multiple niche polymorphism
  publication-title: Amer Natur
  doi: 10.1086/282562
– volume: 16
  start-page: 265
  year: 1994
  ident: 2022092013230303400_ref74
  article-title: Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms
  publication-title: Comput Standards Interf
  doi: 10.1016/0920-5489(94)90017-5
– volume: 9
  year: 2020
  ident: 2022092013230303400_ref64
  article-title: Predicting geographic location from genetic variation with deep neural networks
  publication-title: Elife
  doi: 10.7554/eLife.54507
– volume: 44
  start-page: 1015
  year: 2012
  ident: 2022092013230303400_ref8
  article-title: Evidence of widespread selection on standing variation in Europe at height-associated SNPs
  publication-title: Nat Genet
  doi: 10.1038/ng.2368
– volume: 35
  start-page: 2736
  year: 2018
  ident: 2022092013230303400_ref45
  article-title: A comprehensive map of genetic variation in the world’s largest ethnic group—Han Chinese
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msy170
– volume: 106
  start-page: 254
  year: 1972
  ident: 2022092013230303400_ref58
  article-title: Multiple niche polymorphism
  publication-title: Amer Natur
  doi: 10.1086/282765
– volume: 100
  start-page: 585
  year: 1966
  ident: 2022092013230303400_ref60
  article-title: The maintenance of genetic polymorphism in a spatially heterogeneous environment: variations on a theme by Howard Levene
  publication-title: Amer Natur
  doi: 10.1086/282452
– year: 2021
  ident: 2022092013230303400_ref66
  article-title: Convolutional neural networks as summary statistics for approximate Bayesian computation
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2021.3108695
– volume: 51
  start-page: 1321
  year: 2019
  ident: 2022092013230303400_ref7
  article-title: A method for genome-wide genealogy estimation for thousands of samples
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0484-x
SSID ssj0020781
Score 2.3866801
Snippet Abstract Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it...
Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains...
SourceID pubmedcentral
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Datasets
Deep learning
Genes
Natural selection
Principal components analysis
Problem Solving Protocol
Redundancy
Signatures
Title Deciphering signatures of natural selection via deep learning
URI https://www.proquest.com/docview/2717367638
https://www.proquest.com/docview/2709738877
https://pubmed.ncbi.nlm.nih.gov/PMC9487700
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5EELyIT4xWjdCTEJpkk-zm4EHUUgT10kJvYZ81IGkxreC_dyZJg5Git8DOkPDtZmeGmfmGkL40Acc5U57g0nqREtrjgkqPg3dNfaEojbF3-PklGU2ip2k8bQpkyw0p_JQOZC4HUoJajLSfYH7xOI9fp21chXw1dRMR85DdvWnD-6XbMTydZjb0KbsVkT9MzHCf7DW-oXtXb-YB2TLFIdmpp0V-HZHbB6PyRdWvN3Ox7qLi5CzduXWrR1Atq6k2ALX7mQtXG7Nwm7EQs2MyGT6O70deM_3AU1HAlp60iQL8NE10ENvYUJlyxVRsAwG4Mx1YI7VOBRU6URAFamaZ4bFlVIgUrfQJ2S7mhTklLuXW8jQKQyYgEraaJ2kkKITRsVU65NIhN2toMtVQg-OEivesTlHTDHDMGhwd0m-FFzUjxmaxK8D4b4neGv-s-XHKLMSqgAQuPe6Q63YZjjzmMURh5iuUQY4huB2ZQ1hn39rXIWl2d6XI3yry7BQiNOb7Z_9-3jnZDbHVATNQfo9sLz9W5gIckKW8rI7fNwoL3TQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+signatures+of+natural+selection+via+deep+learning&rft.jtitle=Briefings+in+bioinformatics&rft.au=Qin%2C+Xinghu&rft.au=Chiang%2C+Charleston+W+K&rft.au=Gaggiotti%2C+Oscar+E&rft.date=2022-09-20&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbac354&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon