Deciphering signatures of natural selection via deep learning

Abstract Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which c...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 5
Main Authors Qin, Xinghu, Chiang, Charleston W K, Gaggiotti, Oscar E
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 20.09.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1467-5463
1477-4054
1477-4054
DOI10.1093/bib/bbac354

Cover

More Information
Summary:Abstract Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1467-5463
1477-4054
1477-4054
DOI:10.1093/bib/bbac354