Anti-Inflammatory Effect of Erythropoietin Therapy on Experimental Autoimmune Encephalomyelitis

ABSTRACT Previous studies report that erythropoietin (EPO) has a neuroprotective role in some neurodegenerative diseases, but the mechanisms are not completely elucidated. The aim of this study was to investigate whether EPO exerts neuroprotective role in experimental autoimmune encephalomyelitis (E...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of neuroscience Vol. 122; no. 5; pp. 255 - 262
Main Authors Zhang, Xiang, Li, Qin-Ying, Xiao, Bao-Guo
Format Journal Article
LanguageEnglish
Published England Informa Healthcare 01.05.2012
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT Previous studies report that erythropoietin (EPO) has a neuroprotective role in some neurodegenerative diseases, but the mechanisms are not completely elucidated. The aim of this study was to investigate whether EPO exerts neuroprotective role in experimental autoimmune encephalomyelitis (EAE) via the routes of anti-inflammation. We established an EAE mice model treated intraperitoneally with EPO at the dose of 5,000 IU/kg on schedule, and recorded the clinical score and weight fluctuation. The infiltration of inflammatory cells in the spinal cord of EAE mice was observed with hemotoxylin and eosin (HE) staining, and the levels of IL-10, IFN-γ, IL-17, and MHC-II in central nervous system (CNS)-infiltrating cells and peripheral mononuclear cells were detected by flow cytometry or ELISA. EPO therapy ameliorates clinical signs of EAE mice, inhibits the body weight loss, and decreases the infiltration of inflammatory cells in spinal cords. IL-17 and IFN-γ are reduced, while IL-10 is not increased significantly, in both CNS-infiltrating cells and peripheral mononuclear cells of EPO-treated EAE mice, as compared with EAE control group. EPO also reduces the expression of MHC-II on peripheral antigen presentation cells. Our results indicate that EPO exerts a beneficial role in EAE by inhibiting the levels of IL-17 and IFN-γ in peripheral splenic cells and CNS-infiltrating cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-7454
1563-5279
1543-5245
DOI:10.3109/00207454.2011.648761