Robotic Exoskeleton for Wrist and Fingers Joint in Post-Stroke Neuro-Rehabilitation for Low-Resource Settings

Robots have the potential to help provide exercise therapy in a repeatable and reproducible manner for stroke survivors. To facilitate rehabilitation of the wrist and fingers joint, an electromechanical exoskeleton was developed that simultaneously moves the wrist and metacarpophalangeal joints. The...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 27; no. 12; pp. 2369 - 2377
Main Authors Singh, Neha, Saini, Megha, Anand, Sneh, Kumar, Nand, Srivastava, M. V. Padma, Mehndiratta, Amit
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Robots have the potential to help provide exercise therapy in a repeatable and reproducible manner for stroke survivors. To facilitate rehabilitation of the wrist and fingers joint, an electromechanical exoskeleton was developed that simultaneously moves the wrist and metacarpophalangeal joints. The device was designed for the ease of manufacturing and maintenance, with specific considerations for countries with limited resources. Active participation of the user is ensured by the implementation of electromyographic control and visual feedback of performance. Muscle activity requirements, movement parameters, range of motion and speed, of the device can all be customized to meet the needs of the user. Twelve stroke survivors, ranging from the subacute to chronic phases of recovery (mean 10.6 months post-stroke) participated in a pilot study with the device. Participants completed 20 sessions, each lasting 45 minutes. Overall, subjects exhibited statistically significant changes (p <; 0.05) in clinical outcome measures following the treatment, with the Fugl-Meyer Stroke Assessment score for the upper extremity increasing from 36 to 50 and the Barthel Index increasing from 74 to 89. Active range of wrist motion increased by 19° while spasticity decreased from 1.75 to 1.29 on the Modified Ashworth Scale. Thus, this device shows promise for improving rehabilitation outcomes, especially for patients in countries with limited resources.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2019.2943005