Combined Connection Admission Control and Packet Transmission Scheduling for Mobile Internet Services

Mobile Internet access is expected to be the most popular communication service in the near future. In this paper, we investigate radio resource management for mobile Internet multimedia systems that use the orthogonal frequency division multiple access and adopt the adaptive modulation and coding t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 55; no. 5; pp. 1582 - 1593
Main Authors Jeon, W.S., Jeong, D.G.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mobile Internet access is expected to be the most popular communication service in the near future. In this paper, we investigate radio resource management for mobile Internet multimedia systems that use the orthogonal frequency division multiple access and adopt the adaptive modulation and coding technique. It is assumed that real-time (RT) service such as streaming video and best-effort (BE) services such as file transfer protocol and hypertext transfer protocol coexist in the systems. We suggest two levels of radio resource management schemes: the connection admission control (CAC) scheme at the first level and the packet transmission scheduler at the second level. The proposed scheduler does not assign higher priority to RT packets over BE packets unconditionally. Instead, only the RT packets that are close to the deadline are given higher priority. Therefore, the performance of BE services is improved at the cost of RT services. To control the performance degradation in RT services within an acceptable level, the CAC algorithm functions as a congestion controller. The combined effects of the proposed CAC and packet scheduling by using the cross-layer simulation that covers from the physical layer to the Internet application layer are evaluated. The numerical results show that the proposed schemes greatly improve the performance of BE services while maintaining the quality of video service at an acceptable level
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2006.878562