Phantom Model of Physiologic Intracranial Pressure and Cerebrospinal Fluid Dynamics

We describe herein a novel life-size phantom model of the intracranial cavity and its validation. The cerebrospinal fluid (CSF) domains including ventricular, cysternal, and subarachnoid spaces were derived via magnetic resonance imaging. Brain mechanical properties and cranio-spinal compliance were...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 59; no. 6; pp. 1532 - 1538
Main Authors Bottan, Simone, Poulikakos, Dimos, Kurtcuoglu, Vartan
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2012
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2012.2187448

Cover

More Information
Summary:We describe herein a novel life-size phantom model of the intracranial cavity and its validation. The cerebrospinal fluid (CSF) domains including ventricular, cysternal, and subarachnoid spaces were derived via magnetic resonance imaging. Brain mechanical properties and cranio-spinal compliance were set based on published data. Both bulk and pulsatile physiologic CSF flow were modeled. Model validation was carried out by comparisons of flow and pressure measurements in the phantom with published in vivo data of healthy subjects. Physiologic intracranial pressure with 10 mmHg mean and 0.4 mmHg peak pulse amplitude was recorded in the ventricles. Peak CSF flow rates of 0.2 and 2 ml/s were measured in the cerebral aqueduct and subarachnoid space, respectively. The phantom constitutes a first-of-its-kind approach to modeling physiologic intracranial dynamics in vitro. Herein, we describe the phantom design and manufacturing, definition and implementation of its operating parameters, as well as the validation of the modeled dynamics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2012.2187448