Noninvasive Imaging of Apoptosis and Its Application in Cancer Therapeutics

Purpose: Activation of the apoptotic cascade plays an important role in the response of tumors to therapy. Noninvasive imaging of apoptosis facilitates optimization of therapeutic protocols regarding dosing and schedule and enables identification of efficacious combination therapies. Experimental De...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 14; no. 8; pp. 2492 - 2501
Main Authors Coppola, Julia M., Ross, Brian D., Rehemtulla, Alnawaz
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 15.04.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose: Activation of the apoptotic cascade plays an important role in the response of tumors to therapy. Noninvasive imaging of apoptosis facilitates optimization of therapeutic protocols regarding dosing and schedule and enables identification of efficacious combination therapies. Experimental Design: We describe a hybrid polypeptide that reports on caspase-3 activity in living cells and animals in a noninvasive manner. This reporter, ANLucBCLuc, constitutes a fusion of small interacting peptides, peptide A and peptide B, with the NLuc and CLuc fragments of luciferase with a caspase-3 cleavage site (DEVD) between pepANLuc (ANLuc) and pepBCLuc (BCLuc). During apoptosis, caspase-3 cleaves the reporter, enabling separation of ANLuc from BCLuc. A high-affinity interaction between peptide A and peptide B restores luciferase activity by NLuc and CLuc complementation. Using a D54 glioma model, we show the utility of the reporter in imaging of apoptosis in living subjects in response to various chemotherapy and radiotherapy regimens. Results: Treatment of live cells and mice carrying D54 tumor xenografts with chemotherapeutic agents such as temozolomide and perifosine resulted in induction of bioluminescence activity, which correlated with activation of caspase-3. Treatment of mice with combination therapy of temozolomide and radiation resulted in increased bioluminescence activity over individual treatments and increased therapeutic response due to enhanced apoptosis. Conclusion: The data provided show the utility of the ANLucBCLuc reporter in dynamic, noninvasive imaging of apoptosis and provides a rationale for use of this technology to optimize dose and schedule of novel therapies or to develop novel combination therapies using existing drugs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-07-0782