Vagal and gastric connections to the central nervous system determined by the transport of horseradish peroxidase

Horseradish peroxidase (HRP, Sigma Type VI) crystals were encased in a parafilm envelope and applied to the transected central ends of the left and right cervical vagus nerves and the anterior and posterior esophageal vagus nerves of adult male hooded rats. Injections of 30% HRP were made into the m...

Full description

Saved in:
Bibliographic Details
Published inBrain research bulletin Vol. 13; no. 4; p. 573
Main Authors Scharoun, S L, Barone, F C, Wayner, M J, Jones, S M
Format Journal Article
LanguageEnglish
Published United States 01.01.1984
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Horseradish peroxidase (HRP, Sigma Type VI) crystals were encased in a parafilm envelope and applied to the transected central ends of the left and right cervical vagus nerves and the anterior and posterior esophageal vagus nerves of adult male hooded rats. Injections of 30% HRP were made into the muscle wall of the fundus and antrum regions of the stomach. After 48 hr survival time, animals were perfused intracardially with a phosphate buffer plus sucrose wash followed by glutaraldehyde and paraformaldehyde fixative. The brain stem, spinal cord and corresponding dorsal root ganglia, superior cervical sympathetic ganglion, and the nodose ganglion were removed and cut into 50 micron sections. All tissue was processed with tetramethylbenzidine (TMB) for the blue reaction according to Mesulum and counterstained with neutral red. Sequential sections were examined under a microscope. Labeled neurons and nerve terminals were identified using bright and dark field condensers and polarized light. In tissue from animals that had HRP applied to the cervical vagus nerves, retrogradely labeled neurons were identified ipsilaterally in the medulla located in the dorsal motor nucleus of the vagus (DMN) and the nucleus ambiguus (NA). Labeled cells extended from the DMN into the spinal cord in ventral-medial and laminae X regions C1 and C2 of cervical segments. Many neurons were labeled in the nodose ganglion. Anterogradely labeled terminals were observed throughout and adjacent to the solitary nucleus (NTS) dorsal to the DMN and intermixed among labeled neurons located in the DMN. In tissue from animals that had HRP applied to the esophageal vagus nerves, similar labeling was observed. However, fewer neurons were identified in the NA, the nodose ganglion, and only in laminae X of the cervical spinal cord segments C1 and C2. Also, very little terminal labeling was observed in and adjacent to the NTS. Labeled neurons in tissue from animals that had HRP injected into the stomach wall were observed bilaterally in the DMN, nodose ganglion, and only in laminae X at the C1 and C2 levels of the spinal cord. Labeled neurons also were observed in the dorsal root ganglia of the thoracic cord. These data indicate that cervical cord and NA neurons are important in the supradiaphragmatic motor innervation by the vagus. Also, many afferents to the NTS originate above the diaphragm. In addition, some afferents from the stomach enter the central nervous system via the thoracic spinal cord.
ISSN:0361-9230
1873-2747
DOI:10.1016/0361-9230(84)90040-6