A Survey on Evolutionary Neural Architecture Search
Deep neural networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labor-intensive because of the trial-and-error process and also...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 2; pp. 550 - 570 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep neural networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labor-intensive because of the trial-and-error process and also not easy to realize due to the rare expertise in practice. Neural architecture search (NAS) is a type of technology that can design the architectures automatically. Among different methods to realize NAS, the evolutionary computation (EC) methods have recently gained much attention and success. Unfortunately, there has not yet been a comprehensive summary of the EC-based NAS algorithms. This article reviews over 200 articles of most recent EC-based NAS methods in light of the core components, to systematically discuss their design principles and justifications on the design. Furthermore, current challenges and issues are also discussed to identify future research in this emerging field. |
---|---|
AbstractList | Deep neural networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labor-intensive because of the trial-and-error process and also not easy to realize due to the rare expertise in practice. Neural architecture search (NAS) is a type of technology that can design the architectures automatically. Among different methods to realize NAS, the evolutionary computation (EC) methods have recently gained much attention and success. Unfortunately, there has not yet been a comprehensive summary of the EC-based NAS algorithms. This article reviews over 200 articles of most recent EC-based NAS methods in light of the core components, to systematically discuss their design principles and justifications on the design. Furthermore, current challenges and issues are also discussed to identify future research in this emerging field. Deep neural networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labor-intensive because of the trial-and-error process and also not easy to realize due to the rare expertise in practice. Neural architecture search (NAS) is a type of technology that can design the architectures automatically. Among different methods to realize NAS, the evolutionary computation (EC) methods have recently gained much attention and success. Unfortunately, there has not yet been a comprehensive summary of the EC-based NAS algorithms. This article reviews over 200 articles of most recent EC-based NAS methods in light of the core components, to systematically discuss their design principles and justifications on the design. Furthermore, current challenges and issues are also discussed to identify future research in this emerging field.Deep neural networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labor-intensive because of the trial-and-error process and also not easy to realize due to the rare expertise in practice. Neural architecture search (NAS) is a type of technology that can design the architectures automatically. Among different methods to realize NAS, the evolutionary computation (EC) methods have recently gained much attention and success. Unfortunately, there has not yet been a comprehensive summary of the EC-based NAS algorithms. This article reviews over 200 articles of most recent EC-based NAS methods in light of the core components, to systematically discuss their design principles and justifications on the design. Furthermore, current challenges and issues are also discussed to identify future research in this emerging field. |
Author | Xue, Bing Zhang, Mengjie Tan, Kay Chen Yen, Gary G. Sun, Yanan Liu, Yuqiao |
Author_xml | – sequence: 1 givenname: Yuqiao orcidid: 0000-0001-6255-2714 surname: Liu fullname: Liu, Yuqiao email: lyqguitar@gmail.com organization: College of Computer Science, Sichuan University, Chengdu, China – sequence: 2 givenname: Yanan orcidid: 0000-0001-6374-1429 surname: Sun fullname: Sun, Yanan email: ysun@scu.edu.cn organization: College of Computer Science, Sichuan University, Chengdu, China – sequence: 3 givenname: Bing orcidid: 0000-0002-4865-8026 surname: Xue fullname: Xue, Bing email: bing.xue@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 4 givenname: Mengjie orcidid: 0000-0003-4463-9538 surname: Zhang fullname: Zhang, Mengjie email: mengjie.zhang@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 5 givenname: Gary G. orcidid: 0000-0001-8851-5348 surname: Yen fullname: Yen, Gary G. email: gyen@okstate.edu organization: School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA – sequence: 6 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen email: kaychen.tan@polyu.edu.hk organization: Department of Computing, Hong Kong Polytechnic University, Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34357870$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LwzAYgIMoTqd_QEEKXrxsvvlq0uMYfsGYhyl4C0n6Bitdq2kr7N_buY-DB3NJAs_zkjyn5LCqKyTkgsKYUshuX-bz2WLMgNExpwBSigNywmjKRoxrfbg_q7cBOW-aD-hXCjIV2TEZcMGl0gpOCJ8kiy5-4yqpq-Tuuy67tqgrG1fJHLtoy2QS_XvRom-7iMkCbX89I0fBlg2eb_cheb2_e5k-jmbPD0_TyWzkBVXtyLo0hFTbzElhHQgnrE6pE3nwIbfofA4ZKg-UBZeDU8C5Vl4HLVGCCxkfkpvN3M9Yf3XYtGZZNB7L0lZYd41hUmaCCwVr9PoP-lF3sepfZ5hSXEjJFe-pqy3VuSXm5jMWy_6rZpejB_QG8LFumojB-KK16yJttEVpKJh1fPMb36zjm238XmV_1N30f6XLjVQg4l7IJGilBP8BRt6OhA |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1007_s13042_024_02300_6 crossref_primary_10_1109_TETCI_2024_3377683 crossref_primary_10_1109_TFUZZ_2024_3373792 crossref_primary_10_1109_TNNLS_2024_3382724 crossref_primary_10_1109_TII_2023_3305682 crossref_primary_10_1109_MCI_2023_3277769 crossref_primary_10_1109_TEVC_2023_3255263 crossref_primary_10_1016_j_asoc_2023_110671 crossref_primary_10_1109_ACCESS_2022_3212767 crossref_primary_10_1109_JSEN_2023_3325545 crossref_primary_10_1016_j_swevo_2025_101879 crossref_primary_10_1109_TEVC_2023_3346969 crossref_primary_10_1016_j_neucom_2024_129111 crossref_primary_10_1016_j_ins_2024_120644 crossref_primary_10_1109_TEVC_2023_3338371 crossref_primary_10_1109_TNNLS_2023_3347542 crossref_primary_10_1109_TPAMI_2024_3498035 crossref_primary_10_1007_s00138_024_01611_6 crossref_primary_10_1007_s10586_024_04828_2 crossref_primary_10_1109_TPAMI_2024_3395423 crossref_primary_10_1002_rob_22247 crossref_primary_10_1109_TII_2024_3393553 crossref_primary_10_1109_TIP_2024_3512381 crossref_primary_10_1007_s00521_022_07035_5 crossref_primary_10_1016_j_dsp_2024_104559 crossref_primary_10_1142_S179396232541003X crossref_primary_10_1109_TNNLS_2021_3123105 crossref_primary_10_1007_s13042_022_01578_8 crossref_primary_10_1109_ACCESS_2024_3441469 crossref_primary_10_1007_s11547_024_01770_6 crossref_primary_10_1016_j_swevo_2024_101629 crossref_primary_10_1109_TNNLS_2023_3283239 crossref_primary_10_1016_j_neunet_2024_106427 crossref_primary_10_1016_j_aej_2023_12_028 crossref_primary_10_1109_TEVC_2023_3319566 crossref_primary_10_1109_JSTARS_2022_3217047 crossref_primary_10_3390_ai4030039 crossref_primary_10_1016_j_eswa_2023_121202 crossref_primary_10_1109_TCCN_2022_3169740 crossref_primary_10_1016_j_ins_2024_121347 crossref_primary_10_1145_3715851 crossref_primary_10_1109_TCBB_2023_3272333 crossref_primary_10_1016_j_indcrop_2024_118635 crossref_primary_10_1016_j_knosys_2025_113122 crossref_primary_10_1016_j_jksuci_2024_102226 crossref_primary_10_1016_j_swevo_2024_101741 crossref_primary_10_3389_fpls_2022_897883 crossref_primary_10_1016_j_cja_2024_11_005 crossref_primary_10_1109_TETCI_2023_3301395 crossref_primary_10_1109_TCASAI_2024_3493036 crossref_primary_10_1109_TEVC_2023_3290172 crossref_primary_10_1109_MCI_2022_3155332 crossref_primary_10_1109_LSENS_2023_3273733 crossref_primary_10_1016_j_asoc_2025_112832 crossref_primary_10_3934_era_2024013 crossref_primary_10_1007_s11227_022_04960_z crossref_primary_10_1016_j_asoc_2023_110216 crossref_primary_10_1021_acsami_4c06740 crossref_primary_10_1007_s11227_023_05790_3 crossref_primary_10_1016_j_swevo_2025_101856 crossref_primary_10_1109_TETCI_2023_3251400 crossref_primary_10_1007_s41095_024_0447_8 crossref_primary_10_1109_TAI_2021_3128502 crossref_primary_10_1109_TIV_2023_3319689 crossref_primary_10_1016_j_neunet_2025_107368 crossref_primary_10_1109_TIM_2024_3400360 crossref_primary_10_1007_s00521_024_09903_8 crossref_primary_10_1109_TVT_2024_3369748 crossref_primary_10_1109_TCYB_2024_3455760 crossref_primary_10_1109_ACCESS_2023_3295330 crossref_primary_10_1007_s11633_022_1357_9 crossref_primary_10_1016_j_pnucene_2024_105294 crossref_primary_10_1016_j_bspc_2024_106325 crossref_primary_10_1109_TNNLS_2023_3269816 crossref_primary_10_1016_j_eswa_2024_125806 crossref_primary_10_3934_era_2024092 crossref_primary_10_3390_app14146143 crossref_primary_10_1007_s10115_024_02179_3 crossref_primary_10_1007_s40747_023_01166_5 crossref_primary_10_1007_s40747_025_01845_5 crossref_primary_10_1080_09524622_2024_2329193 crossref_primary_10_1109_TAI_2024_3407033 crossref_primary_10_3390_biomimetics8070525 crossref_primary_10_1109_JIOT_2024_3386965 crossref_primary_10_3389_fnume_2022_1083245 crossref_primary_10_1049_csy2_12085 crossref_primary_10_1007_s10462_022_10303_4 crossref_primary_10_1109_TAI_2024_3477457 crossref_primary_10_1109_ACCESS_2023_3320133 crossref_primary_10_1088_1361_6501_ad8f4c crossref_primary_10_1109_TPAMI_2023_3334614 crossref_primary_10_1109_TNNLS_2023_3326648 crossref_primary_10_1109_TAI_2021_3134600 crossref_primary_10_1109_TAI_2023_3322394 crossref_primary_10_1109_TITS_2023_3321384 crossref_primary_10_1016_j_asoc_2023_111176 crossref_primary_10_7717_peerj_cs_1903 crossref_primary_10_1007_s11517_024_03025_y crossref_primary_10_1109_ACCESS_2024_3365349 crossref_primary_10_1016_j_asoc_2024_111442 crossref_primary_10_1109_TEVC_2023_3324852 crossref_primary_10_1109_TEVC_2022_3220747 crossref_primary_10_1016_j_aei_2024_102395 crossref_primary_10_1016_j_swevo_2024_101837 crossref_primary_10_1109_MCOM_001_2300587 crossref_primary_10_1016_j_patcog_2023_110052 crossref_primary_10_1109_ACCESS_2024_3355804 crossref_primary_10_1016_j_autcon_2024_105593 crossref_primary_10_1109_TEVC_2024_3353182 crossref_primary_10_1093_nsr_nwae282 crossref_primary_10_3390_math12101563 crossref_primary_10_1109_ACCESS_2023_3312217 crossref_primary_10_32604_cmc_2024_051757 crossref_primary_10_1016_j_bspc_2024_107479 crossref_primary_10_3390_math11194115 crossref_primary_10_1038_s41467_023_36961_8 crossref_primary_10_1109_TEVC_2022_3147526 crossref_primary_10_1145_3603704 crossref_primary_10_1007_s10115_024_02090_x crossref_primary_10_3934_mbe_2023671 crossref_primary_10_1007_s12626_023_00151_1 crossref_primary_10_1016_j_neucom_2024_127664 crossref_primary_10_1109_TNNLS_2023_3339614 crossref_primary_10_1016_j_knosys_2024_112810 crossref_primary_10_3390_ai5040142 crossref_primary_10_34133_research_0442 crossref_primary_10_1016_j_swevo_2024_101663 crossref_primary_10_1109_TCYB_2023_3267109 crossref_primary_10_1016_j_neunet_2024_106104 crossref_primary_10_4018_IJCINI_371401 crossref_primary_10_1007_s10115_024_02329_7 crossref_primary_10_1109_TEVC_2021_3088631 crossref_primary_10_1016_j_eswa_2025_127237 crossref_primary_10_1515_nanoph_2023_0527 crossref_primary_10_1109_TAI_2022_3207112 crossref_primary_10_1109_TCSVT_2024_3407138 crossref_primary_10_1016_j_icte_2025_02_008 crossref_primary_10_1109_JIOT_2024_3428554 crossref_primary_10_3389_fphys_2022_1097204 crossref_primary_10_1007_s00521_024_10759_1 crossref_primary_10_1007_s11063_024_11659_0 crossref_primary_10_1016_j_iot_2023_101047 crossref_primary_10_14778_3705829_3705835 crossref_primary_10_1016_j_asoc_2023_110412 crossref_primary_10_1109_MNANO_2025_3533937 crossref_primary_10_3390_math13040631 crossref_primary_10_3389_fncom_2023_1092185 crossref_primary_10_1109_TCASAI_2024_3523858 crossref_primary_10_1109_ACCESS_2023_3253818 crossref_primary_10_1109_TEVC_2023_3307245 crossref_primary_10_1109_TCAD_2023_3262201 crossref_primary_10_1007_s00034_024_02919_4 crossref_primary_10_3934_era_2024050 crossref_primary_10_1007_s00500_023_08316_4 crossref_primary_10_1186_s13634_022_00868_1 crossref_primary_10_1038_s41598_022_12509_6 crossref_primary_10_1109_TETCI_2023_3289974 crossref_primary_10_1109_TGRS_2025_3537085 crossref_primary_10_1016_j_patcog_2023_109790 crossref_primary_10_1007_s40747_023_01168_3 crossref_primary_10_1007_s40747_022_00919_y crossref_primary_10_3390_drones7050287 crossref_primary_10_1007_s10710_024_09483_5 crossref_primary_10_1007_s10586_024_04765_0 crossref_primary_10_1007_s10462_024_10726_1 crossref_primary_10_1109_TNNLS_2023_3346169 crossref_primary_10_1016_j_procs_2025_02_177 crossref_primary_10_1038_s42256_024_00928_1 crossref_primary_10_1109_TIM_2022_3219476 crossref_primary_10_1007_s12065_023_00874_8 crossref_primary_10_1016_j_compmedimag_2023_102307 |
Cites_doi | 10.1007/978-3-030-30484-3_32 10.1007/978-981-15-1398-5_1 10.1109/TEVC.2007.892759 10.1109/TCYB.2020.2983860 10.1145/3321707.3321729 10.1109/TEVC.2004.826067 10.1109/TNN.2010.2064176 10.1007/978-3-030-03991-2_24 10.1109/AFGR.1996.557260 10.1109/MCSoC2018.2018.00049 10.1162/neco.1997.9.8.1735 10.1609/aaai.v33i01.33014780 10.1109/CEC.2018.8477921 10.1016/j.swevo.2019.05.010 10.1109/CEC.2018.8477735 10.1016/j.swevo.2020.100650 10.1109/ICMLA.2011.73 10.1109/ICCV.2019.00188 10.1109/HPEC.2019.8916533 10.1162/neco.2006.18.7.1527 10.1007/s10710-018-9339-y 10.1109/CVPR.2016.90 10.1109/CVPR.2019.00927 10.1371/journal.pone.0188746 10.1038/s42256-018-0006-z 10.1007/s00500-008-0347-3 10.1109/TEVC.2018.2791283 10.1145/3205455.3205489 10.1109/ICIP.2018.8451394 10.1109/MMAR.2019.8864624 10.1155/2019/2537689 10.1002/cpe.4128 10.1109/CVPR.2017.243 10.1007/s11633-016-1006-2 10.1109/TNNLS.2018.2881143 10.1109/ACCESS.2019.2933947 10.1109/IFSA-SCIS.2017.8023302 10.1109/GCCE46687.2019.9015558 10.1145/3377930.3389834 10.1007/s10772-019-09652-3 10.1109/ACCESS.2018.2880416 10.1145/3319619.3322003 10.1109/72.265960 10.1109/CEC.2018.8477790 10.1145/2834892.2834896 10.1109/TNNLS.2016.2582798 10.1007/978-3-319-10590-1_53 10.1145/3205455.3205637 10.1109/BESC48373.2019.8962993 10.1109/SLT.2016.7846334 10.1007/978-3-030-16692-2_33 10.1109/IJCNN.2019.8852417 10.1007/978-3-642-04277-5_76 10.1109/TPAMI.1987.4767897 10.1038/nature14539 10.1007/s10710-019-09354-4 10.1613/jair.301 10.1109/ICNN.1995.488968 10.1007/978-3-030-01252-6_32 10.1109/IRI.2019.00052 10.1007/s10462-019-09719-2 10.1109/ICASSP.2017.7953077 10.1109/CCWC47524.2020.9031239 10.1007/978-3-030-44094-7_3 10.1109/CEC.2018.8477933 10.1109/HPBDIS.2019.8735458 10.1109/JSYST.2014.2300201 10.1109/ICCVW.2019.00238 10.1109/ICCV.2017.154 10.1109/SMC.2019.8914267 10.1145/3321707.3321721 10.1109/ICASSP.2015.7178918 10.1109/ECACE.2019.8679206 10.1016/j.inffus.2019.12.007 10.1109/ACCESS.2018.2887023 10.1007/978-3-030-36296-6_76 10.17533/udea.redin.20190736 10.1016/j.asoc.2019.105510 10.1016/j.jpdc.2017.09.006 10.1145/3341105.3373856 10.1109/ICRA.2019.8793613 10.1016/j.energy.2018.05.052 10.1109/TEVC.2018.2808689 10.1109/TEVC.2019.2924461 10.1162/evco_a_00253 10.1109/ICMLA.2019.00018 10.1201/9780367802486 10.1109/TEVC.2013.2281535 10.1109/CEC.2019.8790093 10.1109/ICCVW.2019.00256 10.1109/CVPR.2018.00907 10.1007/978-3-540-31880-4_35 10.1109/CEC.2019.8790151 10.1016/j.asoc.2018.09.013 10.1016/j.future.2019.01.049 10.1080/01691864.2018.1529620 10.1109/5.726791 10.1145/3240765.3243494 10.1109/4235.996017 10.1109/ACCESS.2020.2964424 10.1089/big.2020.0051 10.1109/TNNLS.2019.2919608 10.1016/j.media.2019.03.004 10.1007/978-3-319-77538-8_27 10.1007/978-981-15-0306-1_5 10.1109/TNNLS.2017.2695223 10.1007/978-3-642-35289-8_26 10.1109/TEVC.2021.3079985 10.1016/j.biortech.2019.121971 10.1007/s00521-020-04749-2 10.1007/978-1-4614-6940-7_15 10.1007/978-3-319-99259-4_34 10.1016/j.neucom.2019.10.053 10.1145/3321707.3321735 10.1007/978-3-030-30642-7_20 10.1109/TCYB.2015.2409837 10.1007/978-3-030-55789-8_61 10.1145/3205455.3205631 10.1145/3071178.3071229 10.1109/ICDAR.1995.598994 10.1109/CEC.2019.8790145 10.1016/j.neucom.2019.10.096 10.1007/978-3-030-32248-9_83 10.1016/B978-0-12-815480-9.00015-3 10.1016/j.neucom.2019.01.110 10.1109/3477.484436 10.7551/mitpress/3927.001.0001 10.1145/3129416.3129429 10.1007/BFb0055923 10.1007/978-3-319-16468-7_8 10.1007/s12065-007-0002-4 10.1109/BigData.2015.7364099 10.1145/3071178.3071208 10.1016/j.micpro.2020.102989 10.1016/j.neunet.2019.12.005 10.1016/j.knosys.2019.01.015 10.1007/978-3-030-29894-4_52 10.1109/TEVC.2019.2916183 10.1088/1361-6501/aae5b2 10.1109/CVPR.2015.7298594 10.1145/3378184.3378187 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2021.3100554 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Computer Science |
EISSN | 2162-2388 |
EndPage | 570 |
ExternalDocumentID | 34357870 10_1109_TNNLS_2021_3100554 9508774 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Science and Technology Innovation Talent Project of Sichuan Province grantid: 2021JDRC0001 – fundername: Research Grants Council of the Hong Kong SAR grantid: PolyU11202418; PolyU11209219 funderid: 10.13039/501100002920 – fundername: National Natural Science Foundation of China grantid: 61803277 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c417t-ab6ff68a9b54ab04b4a861b4dfcfdaebcd09e7c012fbd0b703387c8f85e50bf93 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 04:10:53 EDT 2025 Sun Jun 29 16:57:28 EDT 2025 Thu Jan 02 22:52:03 EST 2025 Tue Jul 01 00:27:40 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Wed Aug 27 02:48:03 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-ab6ff68a9b54ab04b4a861b4dfcfdaebcd09e7c012fbd0b703387c8f85e50bf93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6374-1429 0000-0003-4463-9538 0000-0001-6255-2714 0000-0001-8851-5348 0000-0002-6802-2463 0000-0002-4865-8026 |
PMID | 34357870 |
PQID | 2773455373 |
PQPubID | 85436 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2773455373 proquest_miscellaneous_2559434709 pubmed_primary_34357870 crossref_citationtrail_10_1109_TNNLS_2021_3100554 crossref_primary_10_1109_TNNLS_2021_3100554 ieee_primary_9508774 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref56 ref208 ref59 ref58 ref206 ref203 ref52 ref204 ref55 ref201 ref54 ahmed (ref66) 2019 singh (ref48) 2019 ref210 ref211 ref51 zhu (ref171) 2020 ref219 ref47 ref214 ref215 devlin (ref4) 2018 ref44 ref212 ref43 ref49 ref7 ref9 ref3 ref6 ref5 ref221 liu (ref145) 2018 ref40 ref220 ho (ref149) 2020 ref35 ref34 ref37 ref36 ref33 ref38 frachon (ref76) 2019 colangelo (ref202) 2019 calisto (ref73) 2020; 11313 goodfellow (ref41) 2016; 1 fujino (ref213) 2017 elsken (ref26) 2018 shu (ref50) 2020 ref24 ref25 ref20 wei (ref182) 2016 ref22 ref21 assunção (ref99) 2019 collins (ref229) 2016 ref28 ref29 chen (ref125) 2020 deb (ref179) 2001; 16 ho (ref205) 1995; 1 ref128 deng (ref195) 2009 ref97 ref126 ref96 wistuba (ref27) 2019 assunção (ref207) 2019 wang (ref98) 2019 chen (ref130) 2018 ref93 ref133 zhang (ref65) 2019 ref92 ref95 ref94 ref132 chen (ref123) 2019 ref91 ref90 ref89 ref86 ref85 ref138 yang (ref137) 2019 ref88 ref135 ref87 ref136 elsaid (ref163) 2019 yang (ref31) 2009 hu (ref134) 2018 ref82 ref144 kang (ref53) 2019 ref84 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref107 ref228 ref75 ref225 ref226 tanaka (ref160) 2016; 130 ref77 ref102 ref223 ref103 laredo (ref83) 2019 koza (ref224) 1992; 1 ref71 ref70 ref112 ref72 ref110 ref68 wang (ref131) 2019 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref113 simonyan (ref8) 2014 maziarz (ref180) 2018; abs 1811 9828 deb (ref184) 1995; 9 ref60 chen (ref122) 2018 ref62 ref120 ref61 so (ref194) 2019 real (ref23) 2017; 70 kotyan (ref185) 2019 song (ref114) 2019 krizhevsky (ref13) 2009 ref168 ref169 dong (ref172) 2018 wei (ref209) 2020 rawal (ref157) 2018 guo (ref139) 2019 ref170 chu (ref129) 2019 ref175 chrabaszcz (ref222) 2017 ref176 ref173 ref174 miahi (ref119) 2019 camero (ref45) 2018 ref188 elsken (ref32) 2017 ref189 ref186 ref187 ref183 elsken (ref105) 2018 kitano (ref147) 1990; 4 yen (ref74) 2019; 49 jones (ref148) 2019 ref146 chen (ref181) 2015 suganuma (ref42) 2018 liashchynskyi (ref218) 2019 ref155 ref156 ref153 byla (ref106) 2019 ref154 ref151 bender (ref199) 2018 lu (ref101) 2019 ref152 ref158 price (ref30) 2006 qiang (ref39) 2019 ying (ref142) 2019 ref164 ref165 loshchilov (ref162) 2016 ref161 fan (ref124) 2020 ref12 ref15 yu (ref217) 2019 ref11 chung (ref227) 2014 ref17 ref16 zoph (ref10) 2016 ref19 ref18 devries (ref216) 2017 chu (ref200) 2019 goldberg (ref14) 2006 fujino (ref57) 2018 dong (ref143) 2020 cetto (ref111) 2019 liu (ref100) 2017 an (ref177) 2019 ref2 wistuba (ref127) 2018 chu (ref121) 2019 ref191 ref192 ref190 zhang (ref166) 2000; 4 assunção (ref196) 2018 schorn (ref81) 2019 ref197 ref198 ref193 lecun (ref1) 2015; 521 evans (ref167) 2019 neshat (ref159) 2020 lamos-sweeney (ref150) 2012 javaheripi (ref178) 2020 zhang (ref104) 2020 camero (ref46) 2019 |
References_xml | – ident: ref86 doi: 10.1007/978-3-030-30484-3_32 – ident: ref89 doi: 10.1007/978-981-15-1398-5_1 – ident: ref188 doi: 10.1109/TEVC.2007.892759 – volume: 16 year: 2001 ident: ref179 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref24 doi: 10.1109/TCYB.2020.2983860 – ident: ref170 doi: 10.1145/3321707.3321729 – ident: ref190 doi: 10.1109/TEVC.2004.826067 – year: 2014 ident: ref227 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling publication-title: arXiv 1412 3555 – ident: ref225 doi: 10.1109/TNN.2010.2064176 – ident: ref75 doi: 10.1007/978-3-030-03991-2_24 – ident: ref226 doi: 10.1109/AFGR.1996.557260 – start-page: 1 year: 2018 ident: ref172 article-title: PPP-Net: Platform-aware progressive search for pareto-optimal neural architectures publication-title: Proc 6th Int Conf Learn Represent (ICLR) – start-page: 197 year: 2019 ident: ref99 article-title: Fast denser: Efficient deep neuroevolution publication-title: Proc Eur Conf Genetic Program – ident: ref113 doi: 10.1109/MCSoC2018.2018.00049 – year: 2020 ident: ref171 article-title: Real-time federated evolutionary neural architecture search publication-title: arXiv 2003 02793 – ident: ref204 doi: 10.1162/neco.1997.9.8.1735 – ident: ref36 doi: 10.1609/aaai.v33i01.33014780 – start-page: 119 year: 2019 ident: ref106 article-title: Deepswarm: Optimising convolutional neural networks using swarm intelligence publication-title: Proc UK Workshop Comput Intell – year: 2019 ident: ref46 article-title: Random error sampling-based recurrent neural network architecture optimization publication-title: arXiv 1909 02425 – ident: ref47 doi: 10.1109/CEC.2018.8477921 – volume: 49 start-page: 62 year: 2019 ident: ref74 article-title: Particle swarm optimization of deep neural networks architectures for image classification publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.05.010 – ident: ref97 doi: 10.1109/CEC.2018.8477735 – ident: ref69 doi: 10.1016/j.swevo.2020.100650 – ident: ref54 doi: 10.1109/ICMLA.2011.73 – ident: ref70 doi: 10.1109/ICCV.2019.00188 – year: 2019 ident: ref101 article-title: Multi-objective evolutionary design of deep convolutional neural networks for image classification publication-title: arXiv 1912 01369 [cs] – ident: ref201 doi: 10.1109/HPEC.2019.8916533 – ident: ref37 doi: 10.1162/neco.2006.18.7.1527 – ident: ref197 doi: 10.1007/s10710-018-9339-y – ident: ref2 doi: 10.1109/CVPR.2016.90 – ident: ref93 doi: 10.1109/CVPR.2019.00927 – year: 2018 ident: ref157 article-title: From nodes to networks: Evolving recurrent neural networks publication-title: arXiv 1803 04439 – ident: ref56 doi: 10.1371/journal.pone.0188746 – ident: ref28 doi: 10.1038/s42256-018-0006-z – year: 2016 ident: ref162 article-title: CMA-ES for hyperparameter optimization of deep neural networks publication-title: arXiv 1604 07269 – ident: ref33 doi: 10.1007/s00500-008-0347-3 – volume: 70 start-page: 2902 year: 2017 ident: ref23 article-title: Large-scale evolution of image classifiers publication-title: Proc 34th Int Conf Mach Learn (ICML) – ident: ref17 doi: 10.1109/TEVC.2018.2791283 – ident: ref212 doi: 10.1145/3205455.3205489 – ident: ref120 doi: 10.1109/ICIP.2018.8451394 – ident: ref59 doi: 10.1109/MMAR.2019.8864624 – ident: ref49 doi: 10.1155/2019/2537689 – start-page: 169 year: 2009 ident: ref31 article-title: Firefly algorithms for multimodal optimization publication-title: Proc Int Symp Stochastic Algorithms – ident: ref38 doi: 10.1002/cpe.4128 – ident: ref3 doi: 10.1109/CVPR.2017.243 – volume: 4 start-page: 2487 year: 2000 ident: ref166 article-title: Particle swarm optimisation for evolving artificial neural network publication-title: Proc Conf IEEE Int Conf Syst Man Cybern Cybern Evolving Syst Hum Org Complex Interact (SMC) – start-page: 497 year: 2019 ident: ref123 article-title: Efficient evolutionary deep neural architecture search (NAS) by noisy network morphism mutation publication-title: Proc Int Conf Bio-Inspired Comput Theories Appl – volume: 130 start-page: 1 year: 2016 ident: ref160 article-title: Evolution strategy based neural network optimization and LSTM language model for robust speech recognition publication-title: CIT – year: 2018 ident: ref26 article-title: Neural architecture search: A survey publication-title: arXiv 1808 05377 – year: 2019 ident: ref202 article-title: Evolutionary cell aided design for neural network architectures publication-title: arXiv 1903 02130 – ident: ref228 doi: 10.1007/s11633-016-1006-2 – year: 2019 ident: ref177 article-title: StyleNAS: An empirical study of neural architecture search to uncover surprisingly fast end-to-end universal style transfer networks publication-title: arXiv 1906 02470 – ident: ref25 doi: 10.1109/TNNLS.2018.2881143 – year: 2019 ident: ref137 article-title: CARS: Continuous evolution for efficient neural architecture search publication-title: arXiv 1909 04977 – ident: ref82 doi: 10.1109/ACCESS.2019.2933947 – start-page: 638 year: 2019 ident: ref53 article-title: Efficient neural network space with genetic search publication-title: Proc Int Conf Bio-Inspired Comput Theories Appl – ident: ref34 doi: 10.1109/IFSA-SCIS.2017.8023302 – ident: ref94 doi: 10.1109/GCCE46687.2019.9015558 – ident: ref79 doi: 10.1145/3377930.3389834 – volume: 1 year: 2016 ident: ref41 publication-title: Deep Learning – year: 2006 ident: ref30 publication-title: Differential Evolution A Practical Approach to Global Optimization – ident: ref103 doi: 10.1007/s10772-019-09652-3 – year: 2020 ident: ref209 article-title: NPENAS: Neural predictor guided evolution for neural architecture search publication-title: arXiv 2003 12857 – ident: ref110 doi: 10.1109/ACCESS.2018.2880416 – ident: ref158 doi: 10.1145/3319619.3322003 – ident: ref156 doi: 10.1109/72.265960 – year: 2020 ident: ref125 article-title: ImmuNetNAS: An immune-network approach for searching convolutional neural network architectures publication-title: arXiv 2002 12704 – year: 2017 ident: ref222 article-title: A downsampled variant of ImageNet as an alternative to the CIFAR datasets publication-title: arXiv 1707 08819 – ident: ref64 doi: 10.1109/CEC.2018.8477790 – year: 2020 ident: ref159 article-title: An evolutionary deep learning method for short-term wind speed prediction: A case study of the lillgrund offshore wind farm publication-title: arXiv 2002 09106 – year: 2016 ident: ref10 article-title: Neural architecture search with reinforcement learning publication-title: arXiv 1611 01578 – ident: ref72 doi: 10.1145/2834892.2834896 – volume: abs 1811 9828 start-page: 1 year: 2018 ident: ref180 article-title: Evolutionary-neural hybrid agents for architecture search publication-title: CoRR – ident: ref55 doi: 10.1109/TNNLS.2016.2582798 – ident: ref223 doi: 10.1007/978-3-319-10590-1_53 – start-page: 26 year: 2019 ident: ref39 article-title: Neural architecture search for optimizing deep belief network models of fMRI data publication-title: Proc Int Workshop Multiscale Multimodal Med Imag – ident: ref164 doi: 10.1145/3205455.3205637 – start-page: 473 year: 2019 ident: ref66 article-title: A novel automatic CNN architecture design approach based on genetic algorithm publication-title: Proc Int Conf Adv Intell Syst Inform – ident: ref210 doi: 10.1109/BESC48373.2019.8962993 – ident: ref58 doi: 10.1109/SLT.2016.7846334 – year: 2019 ident: ref81 article-title: Automated design of error-resilient and hardware-efficient deep neural networks publication-title: arXiv 1909 13844 – year: 2019 ident: ref163 article-title: The ant swarm neuro-evolution procedure for optimizing recurrent networks publication-title: arXiv 1909 11849 – ident: ref151 doi: 10.1007/978-3-030-16692-2_33 – ident: ref96 doi: 10.1109/IJCNN.2019.8852417 – ident: ref174 doi: 10.1007/978-3-642-04277-5_76 – year: 2019 ident: ref27 article-title: A survey on neural architecture search publication-title: arXiv 1905 01392 – start-page: 248 year: 2009 ident: ref195 article-title: ImageNet: A large-scale hierarchical image database publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – year: 2012 ident: ref150 article-title: Deep learning using genetic algorithms – ident: ref7 doi: 10.1109/TPAMI.1987.4767897 – year: 2019 ident: ref121 article-title: Multi-objective reinforced evolution in mobile neural architecture search publication-title: arXiv 1901 01074 – volume: 521 start-page: 436 year: 2015 ident: ref1 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref44 doi: 10.1007/s10710-019-09354-4 – year: 2020 ident: ref178 article-title: GeneCAI: Genetic evolution for acquiring compact AI publication-title: arXiv 2004 04249 – ident: ref11 doi: 10.1613/jair.301 – year: 2019 ident: ref185 article-title: Evolving robust neural architectures to defend from adversarial attacks publication-title: arXiv 1906 11667 – ident: ref16 doi: 10.1109/ICNN.1995.488968 – ident: ref214 doi: 10.1007/978-3-030-01252-6_32 – ident: ref67 doi: 10.1109/IRI.2019.00052 – ident: ref18 doi: 10.1007/s10462-019-09719-2 – ident: ref5 doi: 10.1109/ICASSP.2017.7953077 – ident: ref43 doi: 10.1109/CCWC47524.2020.9031239 – ident: ref208 doi: 10.1007/978-3-030-44094-7_3 – year: 2019 ident: ref48 article-title: A genetic algorithm based kernel-size selection approach for a multi-column convolutional neural network publication-title: arXiv 1912 12405 – year: 2018 ident: ref130 article-title: Joint neural architecture search and quantization publication-title: arXiv 1811 09426 – ident: ref154 doi: 10.1109/CEC.2018.8477933 – start-page: 549 year: 2018 ident: ref199 article-title: Understanding and simplifying one-shot architecture search publication-title: Proc 35th Int Conf Mach Learn (ICML) – ident: ref68 doi: 10.1109/HPBDIS.2019.8735458 – year: 2019 ident: ref65 article-title: A new compensatory genetic algorithm-based method for effective compressed multi-function convolutional neural network model selection with multi-objective optimization publication-title: arXiv 1906 11912 – year: 2019 ident: ref131 article-title: Particle swarm optimisation for evolving deep neural networks for image classification by evolving and stacking transferable blocks publication-title: arXiv 1907 12659 – ident: ref220 doi: 10.1109/JSYST.2014.2300201 – ident: ref60 doi: 10.1109/ICCVW.2019.00238 – ident: ref35 doi: 10.1109/ICCV.2017.154 – ident: ref108 doi: 10.1109/SMC.2019.8914267 – ident: ref176 doi: 10.1145/3321707.3321721 – year: 2019 ident: ref148 article-title: Evolutionary deep learning to identify galaxies in the zone of avoidance publication-title: arXiv 1903 07461 – ident: ref140 doi: 10.1109/ICASSP.2015.7178918 – ident: ref84 doi: 10.1109/ECACE.2019.8679206 – ident: ref155 doi: 10.1016/j.inffus.2019.12.007 – ident: ref95 doi: 10.1109/ACCESS.2018.2887023 – start-page: 1 year: 2020 ident: ref143 article-title: Nas-bench-201: Extending the scope of reproducible neural architecture search publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref175 doi: 10.1007/978-3-030-36296-6_76 – ident: ref161 doi: 10.17533/udea.redin.20190736 – year: 2019 ident: ref207 article-title: Fast-DENSER++: Evolving fully-trained deep artificial neural networks publication-title: arXiv 1905 02969 – year: 2019 ident: ref167 article-title: Genetic programming and gradient descent: A memetic approach to binary image classification publication-title: arXiv 1909 13030 – volume: 9 start-page: 115 year: 1995 ident: ref184 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref78 doi: 10.1016/j.asoc.2019.105510 – year: 2019 ident: ref200 article-title: FairNAS: Rethinking evaluation fairness of weight sharing neural architecture search publication-title: arXiv 1907 01845 – year: 2016 ident: ref229 article-title: Capacity and trainability in recurrent neural networks publication-title: arXiv 1611 09913 – ident: ref22 doi: 10.1016/j.jpdc.2017.09.006 – ident: ref118 doi: 10.1145/3341105.3373856 – ident: ref153 doi: 10.1109/ICRA.2019.8793613 – year: 2019 ident: ref139 article-title: Single path one-shot neural architecture search with uniform sampling publication-title: arXiv 1904 00420 – ident: ref90 doi: 10.1016/j.energy.2018.05.052 – ident: ref152 doi: 10.1109/TEVC.2018.2808689 – ident: ref203 doi: 10.1109/TEVC.2019.2924461 – ident: ref116 doi: 10.1162/evco_a_00253 – ident: ref61 doi: 10.1109/ICMLA.2019.00018 – volume: 4 start-page: 461 year: 1990 ident: ref147 article-title: Designing neural networks using genetic algorithms with graph generation system publication-title: Complex Syst – year: 2018 ident: ref105 article-title: Efficient multi-objective neural architecture search via Lamarckian evolution publication-title: arXiv 1804 09081 – ident: ref12 doi: 10.1201/9780367802486 – year: 2020 ident: ref50 article-title: Automatically searching for U-Net image translator architecture publication-title: arXiv 2002 11581 – volume: 11313 year: 2020 ident: ref73 article-title: Self-adaptive 2D-3D ensemble of fully convolutional networks for medical image segmentation publication-title: Proc Med Imag Image Process Int Soc Opt Photon – ident: ref189 doi: 10.1109/TEVC.2013.2281535 – ident: ref146 doi: 10.1109/CEC.2019.8790093 – ident: ref62 doi: 10.1109/ICCVW.2019.00256 – ident: ref144 doi: 10.1109/CVPR.2018.00907 – year: 2019 ident: ref76 article-title: ImmuNeCS: Neural committee search by an artificial immune system publication-title: arXiv 1911 07729 – ident: ref191 doi: 10.1007/978-3-540-31880-4_35 – ident: ref63 doi: 10.1109/CEC.2019.8790151 – ident: ref136 doi: 10.1016/j.asoc.2018.09.013 – ident: ref168 doi: 10.1016/j.future.2019.01.049 – year: 2018 ident: ref134 article-title: A novel channel pruning method for deep neural network compression publication-title: arXiv 1805 11394 – year: 2014 ident: ref8 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref173 doi: 10.1080/01691864.2018.1529620 – ident: ref221 doi: 10.1109/5.726791 – ident: ref215 doi: 10.1145/3240765.3243494 – ident: ref187 doi: 10.1109/4235.996017 – start-page: 12 year: 2009 ident: ref13 article-title: Learning multiple layers of features from tiny images – ident: ref80 doi: 10.1109/ACCESS.2020.2964424 – ident: ref88 doi: 10.1089/big.2020.0051 – year: 2018 ident: ref122 article-title: Reinforced evolutionary neural architecture search publication-title: arXiv 1808 00193 – year: 2020 ident: ref104 article-title: Sampled training and node inheritance for fast evolutionary neural architecture search publication-title: arXiv 2003 11613 – year: 2019 ident: ref129 article-title: Fast, accurate and lightweight super-resolution with neural architecture search publication-title: arXiv 1901 07261 – ident: ref9 doi: 10.1109/TNNLS.2019.2919608 – start-page: 243 year: 2018 ident: ref127 article-title: Deep learning architecture search by neuro-cell-based evolution with function-preserving mutations publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases – ident: ref126 doi: 10.1016/j.media.2019.03.004 – ident: ref128 doi: 10.1007/978-3-319-77538-8_27 – start-page: 17 year: 2019 ident: ref111 article-title: Size/accuracy trade-off in convolutional neural networks: An evolutionary approach publication-title: Proc INNS Big Data Deep Learn Conf – ident: ref77 doi: 10.1007/978-981-15-0306-1_5 – ident: ref198 doi: 10.1109/TNNLS.2017.2695223 – ident: ref6 doi: 10.1007/978-3-642-35289-8_26 – start-page: 564 year: 2016 ident: ref182 article-title: Network morphism publication-title: Proc Int Conf Mach Learn – year: 2015 ident: ref181 article-title: Net2Net: Accelerating learning via knowledge transfer publication-title: arXiv 1511 05641 – ident: ref193 doi: 10.1109/TEVC.2021.3079985 – ident: ref85 doi: 10.1016/j.biortech.2019.121971 – year: 2019 ident: ref114 article-title: Efficient residual dense block search for image super-resolution publication-title: arXiv 1909 11409 – ident: ref206 doi: 10.1007/s00521-020-04749-2 – ident: ref186 doi: 10.1007/978-1-4614-6940-7_15 – ident: ref71 doi: 10.1007/978-3-319-99259-4_34 – ident: ref169 doi: 10.1016/j.neucom.2019.10.053 – ident: ref109 doi: 10.1145/3321707.3321735 – year: 2020 ident: ref124 article-title: Evolutionary neural architecture search for retinal vessel segmentation publication-title: arXiv 2001 06678 – ident: ref132 doi: 10.1007/978-3-030-30642-7_20 – ident: ref219 doi: 10.1109/TCYB.2015.2409837 – ident: ref87 doi: 10.1007/978-3-030-55789-8_61 – ident: ref135 doi: 10.1145/3205455.3205631 – ident: ref112 doi: 10.1145/3071178.3071229 – year: 2018 ident: ref4 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: arXiv 1810 04805 – volume: 1 start-page: 278 year: 1995 ident: ref205 article-title: Random decision forests publication-title: Proc 3rd Int Conf Document Anal Recognition doi: 10.1109/ICDAR.1995.598994 – year: 2019 ident: ref119 article-title: Genetic neural architecture search for automatic assessment of human sperm images publication-title: arXiv 1909 09432 – start-page: 19 year: 2018 ident: ref196 article-title: Evolving the topology of large scale deep neural networks publication-title: Proc Eur Conf Genetic Program – ident: ref133 doi: 10.1109/CEC.2019.8790145 – ident: ref165 doi: 10.1016/j.neucom.2019.10.096 – ident: ref40 doi: 10.1007/978-3-030-32248-9_83 – year: 2019 ident: ref98 article-title: Evolving knowledge and structure through evolution-based neural architecture search – ident: ref117 doi: 10.1016/B978-0-12-815480-9.00015-3 – start-page: 386 year: 2018 ident: ref45 article-title: Evolutionary deep learning for car park occupancy prediction in smart cities publication-title: Proc Int Conf Learn Intell Optim – year: 2017 ident: ref216 article-title: Improved regularization of convolutional neural networks with cutout publication-title: arXiv 1708 04552 – start-page: 7105 year: 2019 ident: ref142 article-title: NAS-bench-101: Towards reproducible neural architecture search publication-title: Proc Int Conf Mach Learn – ident: ref107 doi: 10.1016/j.neucom.2019.01.110 – ident: ref29 doi: 10.1109/3477.484436 – ident: ref183 doi: 10.7551/mitpress/3927.001.0001 – ident: ref20 doi: 10.1145/3129416.3129429 – year: 2018 ident: ref145 article-title: DARTS: Differentiable architecture search publication-title: Arxiv 1806 09055 – ident: ref15 doi: 10.1007/BFb0055923 – ident: ref138 doi: 10.1007/978-3-319-16468-7_8 – year: 2017 ident: ref32 article-title: Simple and efficient architecture search for convolutional neural networks publication-title: Arxiv 1711 04528 – year: 2006 ident: ref14 publication-title: Genetic Algorithms – start-page: 278 year: 2017 ident: ref213 article-title: The evolutionary deep learning based on deep convolutional neural network for the anime storyboard recognition publication-title: Proc Int Symp Distrib Comput Artif Intell – year: 2017 ident: ref100 article-title: Hierarchical representations for efficient architecture search publication-title: arXiv 1711 00436 – ident: ref19 doi: 10.1007/s12065-007-0002-4 – ident: ref211 doi: 10.1109/BigData.2015.7364099 – ident: ref102 doi: 10.1145/3071178.3071208 – year: 2020 ident: ref149 article-title: Neural architecture search for deep image prior publication-title: arXiv 2001 04776 – ident: ref115 doi: 10.1016/j.micpro.2020.102989 – year: 2019 ident: ref83 article-title: Automatic model selection for neural networks publication-title: arXiv 1905 06010 – ident: ref92 doi: 10.1016/j.neunet.2019.12.005 – ident: ref51 doi: 10.1016/j.knosys.2019.01.015 – ident: ref192 doi: 10.1007/978-3-030-29894-4_52 – ident: ref21 doi: 10.1109/TEVC.2019.2916183 – year: 2019 ident: ref217 article-title: Evaluating the search phase of neural architecture search publication-title: arXiv 1902 08142 – year: 2019 ident: ref194 article-title: The evolved transformer publication-title: arXiv 1901 11117 – year: 2018 ident: ref42 article-title: Exploiting the potential of standard convolutional autoencoders for image restoration by evolutionary search publication-title: arXiv 1803 00370 – start-page: 136 year: 2018 ident: ref57 article-title: Recognizing the order of four-scene comics by evolutionary deep learning publication-title: Proc Int Symp Distrib Comput Artif Intell – volume: 1 year: 1992 ident: ref224 publication-title: Genetic Programming On the Programming of Computers by Means of Natural Selection – ident: ref52 doi: 10.1088/1361-6501/aae5b2 – ident: ref141 doi: 10.1109/CVPR.2015.7298594 – ident: ref91 doi: 10.1145/3378184.3378187 – year: 2019 ident: ref218 article-title: Grid search, random search, genetic algorithm: A big comparison for NAS publication-title: arXiv 1912 06059 |
SSID | ssj0000605649 |
Score | 2.7213867 |
Snippet | Deep neural networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 550 |
SubjectTerms | Algorithms Artificial neural networks Computer architecture Convolutional neural networks Deep learning Design Evolutionary computation evolutionary computation (EC) evolutionary neural architecture search (NAS) image classification Neural networks Optimization Search problems Statistics |
Title | A Survey on Evolutionary Neural Architecture Search |
URI | https://ieeexplore.ieee.org/document/9508774 https://www.ncbi.nlm.nih.gov/pubmed/34357870 https://www.proquest.com/docview/2773455373 https://www.proquest.com/docview/2559434709 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ug-zF96O-qOBNu6Z5tkcRRUT3osLeSpImF6Ur61bQX2-SPkRR8VZokraZmc43k3kAHBlGWK5xmTjlhBIqeZ4ogtOEI60IwSZTNkT5jvjVA70es_EcnPS5MMaYEHxmhv4ynOWXE117V9mp71jq4Mo8zDvDrcnV6v0pyOFyHtAuTjlOMBHjLkcG5af3o9HNnbMGcTr0Hm2nQwewSCgJ_PpFJYUeK7_DzaB2LpfhtnvhJtrkcVjP1FC_f6vl-N8vWoGlFn_GZw3DrMKcqdZguevtELeivgYDj0KbIs7rQM7iu3r6at7iSRVfvLbcKqdvsa_tEZb7PI6ImwjmDXi4vLg_v0rabguJpqmYJVJxa3kmc8WoVIgqKjOeKlpabUtplC5RboR2Cs2qEin3pyCZ0JnNmGFI2ZxswkI1qcw2xAwzzI106E44664sM04M10hhaZGbgiNIuw0vdFuK3HfEeCqCSYLyItCr8PQqWnpFcNzPeW4Kcfw5et1vdj-y3ecI9jq6Fq2svhRYCEIZI4JEcNjfdlLmj05kZSa1G-MML0qoQHkEWw0_9Gt3bLTz8zN3YeBb1DeR3nuwMJvWZt8BmZk6CBz8AQuB6rE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BlWAvpQUKaWkbJG6QxfEzOSIE2sKyFxZpb5Ht2BeqLFo2SPTX13YeCFRQb5FiO4nnc-ab8XgG4NAwwnKNy8QpJ5RQyfNEEZwmHGlFCDaZsiHKd8JHt_RyxmYrcNyfhTHGhOAzM_SXYS-_nOvau8pOfMVSR1dW4YPT-yxtTmv1HhXkmDkPfBenHCeYiFl3SgblJ9PJZHzj7EGcDr1P22nRAawTSgJiXyilUGXlbcIZFM_FJlx3r9zEm9wN66Ua6j-vsjn-7zd9go8tA41PG8h8hhVTbcFmV90hbhf7Fgw8D23SOG8DOY1v6sWjeYrnVXz-2OJVLp5in90jDPe8IRE3Mcw7cHtxPj0bJW29hUTTVCwTqbi1PJO5YlQqRBWVGU8VLa22pTRKlyg3QjuVZlWJlPtXkEzozGbMMKRsTr7AWjWvzB7EDDPMjXT8Tjj7riwzTgzXSGFpkeuCI0i7CS90m4zc18T4XQSjBOVFkFfh5VW08orgqO9z36TieLf1tp_svmU7zxHsd3It2tX6UGAhiAMUESSCg_62W2d-80RWZl67Ns70ooQKlEew2-ChH7uD0dd_P_MnbIym1-Ni_Gty9Q0GvmB9E_e9D2vLRW2-O1qzVD8Cmv8Cc0Ht-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Evolutionary+Neural+Architecture+Search&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Yuqiao&rft.au=Sun%2C+Yanan&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.date=2023-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=34&rft.issue=2&rft.spage=550&rft_id=info:doi/10.1109%2FTNNLS.2021.3100554&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |