A Survey on Evolutionary Neural Architecture Search

Deep neural networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labor-intensive because of the trial-and-error process and also...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 2; pp. 550 - 570
Main Authors Liu, Yuqiao, Sun, Yanan, Xue, Bing, Zhang, Mengjie, Yen, Gary G., Tan, Kay Chen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Deep neural networks (DNNs) have achieved great success in many applications. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labor-intensive because of the trial-and-error process and also not easy to realize due to the rare expertise in practice. Neural architecture search (NAS) is a type of technology that can design the architectures automatically. Among different methods to realize NAS, the evolutionary computation (EC) methods have recently gained much attention and success. Unfortunately, there has not yet been a comprehensive summary of the EC-based NAS algorithms. This article reviews over 200 articles of most recent EC-based NAS methods in light of the core components, to systematically discuss their design principles and justifications on the design. Furthermore, current challenges and issues are also discussed to identify future research in this emerging field.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2021.3100554