Human platelet lysate versus minoxidil stimulates hair growth by activating anagen promoting signaling pathways
Abstract Minoxidil and human platelet lysate (HPL) are commonly used to treat patients with hair loss. However, the roles of HPL versus minoxidil in hair follicle biology largely remain unknown. Here, we hypothesized that bulge and dermal papilla (DP) cells may express specific genes, including Kras...
Saved in:
Published in | Biomedicine & pharmacotherapy Vol. 84; pp. 979 - 986 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
France
Elsevier Masson SAS
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract Minoxidil and human platelet lysate (HPL) are commonly used to treat patients with hair loss. However, the roles of HPL versus minoxidil in hair follicle biology largely remain unknown. Here, we hypothesized that bulge and dermal papilla (DP) cells may express specific genes, including Kras, Erk, Akt, Shh and β-catenin after exposure to minoxidil or HPL. The mouse hair follicles were isolated on day 10 after depilation and bulge or DP regions were dissected. The bulge and DP cells were cultured for 14 days in DMEM/F12 medium. Then, the cells were treated with 100 μM minoxidil and 10% HPL for 10 days. Nuclear morphology was identified using DAPi staining. Reverse transcriptase and real-time polymerase chain reaction (PCR) analysis were also performed to examine the expression of Kras, Erk, Akt, Shh and β-catenin mRNA levels in the treated bulge and DP regions after organ culture. Here, we found that minoxidil influences bulge and DP cell survival ( P < 0.05). Apoptosis in DP cells was also meaningfully decreased by HPL treatment ( P = 0.014). In addition, Kras, Akt, Erk, Shh and β-catenin mRNA levels were changed in response to minoxidil treatment in both bulge and DP cells. HPL mediated Erk upregulation in both bulge and DP cells ( P < 0.05), but Kras and Akt mRNA levels were not considerably different in the HPL-treated cells. β-catenin mRNA level was also significantly increased in the bulge region by HPL. We also found that Shh mRNA level was considerably higher in HPL-treated bulge cells than in minoxidil-treated bulge cells. In contrast, the expression of β-cateinin and Shh in the DP cells was not meaningfully increased after treatment with HPL. Our results suggest that minoxidil and HPL can promote hair growth by activating the main anagen inducing signaling pathways. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0753-3322 1950-6007 |
DOI: | 10.1016/j.biopha.2016.10.019 |