Nonlinear Dynamics and Bifurcations of a Supercavitating Vehicle
In this effort, a numerical study of the bifurcation behavior of a supercavitating vehicle is conducted. The vehicle model is nonsmooth; this is a result of the planing force acting on the vehicle. With a focus on dive-plane dynamics, bifurcations with respect to a quasi-static variation of the cavi...
Saved in:
Published in | IEEE journal of oceanic engineering Vol. 32; no. 4; pp. 753 - 761 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this effort, a numerical study of the bifurcation behavior of a supercavitating vehicle is conducted. The vehicle model is nonsmooth; this is a result of the planing force acting on the vehicle. With a focus on dive-plane dynamics, bifurcations with respect to a quasi-static variation of the cavitation number are studied. The system is found to exhibit rich and complex nonlinear dynamics including nonsmooth bifurcations such as the grazing bifurcation; smooth bifurcations such as Hopf bifurcations, cyclic fold bifurcations, and period-doubling bifurcations; and aperiodic behaviors such as transient chaotic motions and chaotic crises. The tailslap phenomenon of the supercavitating vehicle is identified as the consequence of a Hopf bifurcation followed by a grazing event. It is shown that the occurrences of these bifurcations can be delayed or triggered earlier by using dynamic linear feedback control laws employing washout filters. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0364-9059 1558-1691 |
DOI: | 10.1109/JOE.2007.908960 |