Molecularly imprinted polymer diffraction grating as label-free optical bio(mimetic)sensor

Micropatterned molecularly imprinted polymer (MIP) transmissive 2D diffraction gratings (DGs) are fabricated and evaluated as label-free antibiotic bio(mimetic)sensors. Polymeric gratings are prepared by using microtransfer molding based on SiO 2/Si molds. The morphology of the MIP gratings is studi...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 26; no. 5; pp. 2801 - 2804
Main Authors Barrios, C.A., Zhenhe, C., Navarro-Villoslada, F., López-Romero, D., Moreno-Bondi, M.C.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 15.01.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Micropatterned molecularly imprinted polymer (MIP) transmissive 2D diffraction gratings (DGs) are fabricated and evaluated as label-free antibiotic bio(mimetic)sensors. Polymeric gratings are prepared by using microtransfer molding based on SiO 2/Si molds. The morphology of the MIP gratings is studied by optical and atomic force microscopes. MIP 2D-DGs exhibit 2D optical diffraction patterns, and measurement of changes in diffraction efficiency is used as sensor response. The refractive index of the micropatterned MIP material was estimated, via solvent index matching experiments, to be 1.486. Immersion of a MIP 2D-DG in different solutions of target-antibiotic enrofloxacin leads to significant variations in diffraction efficiency, demonstrating target-molecule detection. On the other hand, no significant response is observed for both control experiments: MIP grating exposed to a non-retained analyte and an equivalent non-imprinted polymer grating exposed to the target analyte, showing highly specific antibiotic label-free optical recognition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2010.11.009