Deep Adaptive Input Normalization for Time Series Forecasting

Deep learning (DL) models can be used to tackle time series analysis tasks with great success. However, the performance of DL models can degenerate rapidly if the data are not appropriately normalized. This issue is even more apparent when DL is used for financial time series forecasting tasks, wher...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 9; pp. 3760 - 3765
Main Authors Passalis, Nikolaos, Tefas, Anastasios, Kanniainen, Juho, Gabbouj, Moncef, Iosifidis, Alexandros
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Deep learning (DL) models can be used to tackle time series analysis tasks with great success. However, the performance of DL models can degenerate rapidly if the data are not appropriately normalized. This issue is even more apparent when DL is used for financial time series forecasting tasks, where the nonstationary and multimodal nature of the data pose significant challenges and severely affect the performance of DL models. In this brief, a simple, yet effective, neural layer that is capable of adaptively normalizing the input time series, while taking into account the distribution of the data, is proposed. The proposed layer is trained in an end-to-end fashion using backpropagation and leads to significant performance improvements compared to other evaluated normalization schemes. The proposed method differs from traditional normalization methods since it learns how to perform normalization for a given task instead of using a fixed normalization scheme. At the same time, it can be directly applied to any new time series without requiring retraining. The effectiveness of the proposed method is demonstrated using a large-scale limit order book data set, as well as a load forecasting data set.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2019.2944933