The association between cognitive deficits and prefrontal hemodynamic responses during performance of working memory task in patients with schizophrenia

Abstract Schizophrenia-associated cognitive deficits are resistant to treatment and thus pose a lifelong burden. The Brief Assessment of Cognition in Schizophrenia (BACS) provides reliable and valid assessments across cognitive domains. However, because the prefrontal functional abnormalities specif...

Full description

Saved in:
Bibliographic Details
Published inSchizophrenia research Vol. 172; no. 1-3; pp. 114 - 122
Main Authors Pu, Shenghong, Nakagome, Kazuyuki, Itakura, Masashi, Iwata, Masaaki, Nagata, Izumi, Kaneko, Koichi
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Schizophrenia-associated cognitive deficits are resistant to treatment and thus pose a lifelong burden. The Brief Assessment of Cognition in Schizophrenia (BACS) provides reliable and valid assessments across cognitive domains. However, because the prefrontal functional abnormalities specifically associated with the level of cognitive deficits in schizophrenia have not been examined, we explored this relationship. Patients with schizophrenia ( N = 87) and matched healthy controls ( N = 50) participated in the study. Using near-infrared spectroscopy (NIRS), we measured the hemodynamic responses in the prefrontal and superior temporal cortical surface areas during a working memory task. Correlation analyses revealed a relationship between the hemodynamics and the BACS composite and domain scores. Hemodynamic responses of the left dorsolateral prefrontal cortex (DLPFC) and left frontopolar cortex (FPC) in the higher-level-of-cognitive-function schizophrenia group were weaker than the responses of the controls but similar to those of the lower-level-of-cognitive-function schizophrenia group. However, hemodynamic responses in the right DLPFC, bilateral ventrolateral PFC (VLPFC), and right temporal regions decreased with increasing cognitive deficits. In addition, the hemodynamic response correlated positively with the level of cognitive function (BACS composite scores) in the right DLPFC, bilateral VLPFC, right FPC, and bilateral temporal regions in schizophrenia. The correlation was driven by all BACS domains. Our results suggest that the linked functional deficits in the right DLPFC, bilateral VLPFC, right FPC, and bilateral temporal regions may be related to BACS-measured cognitive impairments in schizophrenia and show that linking the neurocognitive deficits and brain abnormalities can increase our understanding of schizophrenia pathophysiology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0920-9964
1573-2509
DOI:10.1016/j.schres.2016.01.045