Induction of hyperplasia in the bladder epithelium of rats by a dietary excess of acid or base: Implications for toxicity/carcinogenicity testing

In previous studies we observed an increased incidence of hyperplasia in the epithelium of the urinary bladder of rats fed cereal-based stock diet supplemented with 6% monosodium glutamate (MSG) for 3 months. Hyperplasia was not enhanced, however, when 6% MSG was fed in a purified casein diet. Furth...

Full description

Saved in:
Bibliographic Details
Published inFood and chemical toxicology Vol. 26; no. 5; pp. 425 - 434
Main Authors de Groot, A.P., Feron, V.J., Immel, H.R.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 1988
New York, NY Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In previous studies we observed an increased incidence of hyperplasia in the epithelium of the urinary bladder of rats fed cereal-based stock diet supplemented with 6% monosodium glutamate (MSG) for 3 months. Hyperplasia was not enhanced, however, when 6% MSG was fed in a purified casein diet. Further studies have been conducted to identify the dietary factor that caused the different response with the two diets. Feeding MSG had a marked alkalizing effect on the urine. Rats fed purified diet produced urine of higher acidity than did those fed stock diet, a finding attributed to the greater excess of base in the stock diet. When diets with a considerable excess of cations were fed, urinary pH showed a characteristic pattern of widely differing values during a 24-hr period, with high values (pH ⩾ 8) for several hours of darkness, when food intake was high, declining during the day to a minimum at the end of the light period. Hyperplasia of the bladder epithelium was induced not only by feeding MSG, but also by feeding 5% of the alkalizing salt KHCO 3, both in purified diet and in stock diet. The epithelial response to an alkalizing substance was prevented by simultaneous feeding of the acidifying salt NH 4Cl. These findings indicate that the bladder changes induced by MSG are attributable to its alkalizing properties rather than to MSG per se. Moderate to severe hyperplasia of the bladder epithelium was induced also by feeding 5% NH 4Cl in purified diet, a procedure accompanied by a further lowering of urinary pH. These findings showed that hyperplasia of the bladder epithelium of rats can be induced both by acidifying and by alkalizing the urine through manipulation of the acid-base balance of the basal diet. There is thus a possibility that, in carcinogenicity studies, administration of compounds to rats in the form of a salt may lead to erroneous conclusions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-6915
1873-6351
DOI:10.1016/0278-6915(88)90053-1