A Low-Cost End-to-End sEMG-Based Gait Sub-Phase Recognition System

As surface electromyogram (sEMG) signals have the ability to detect human movement intention, they are commonly used to be control inputs. However, gait sub-phase classification typically requires monotonous manual labeling process, and commercial sEMG acquisition devices are quite bulky and expensi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 1; pp. 267 - 276
Main Authors Luo, Ruiming, Sun, Shouqian, Zhang, Xianfu, Tang, Zhichuan, Wang, Weide
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As surface electromyogram (sEMG) signals have the ability to detect human movement intention, they are commonly used to be control inputs. However, gait sub-phase classification typically requires monotonous manual labeling process, and commercial sEMG acquisition devices are quite bulky and expensive, thus current sEMG-based gait sub-phase recognition systems are complex and have poor portability. This study presents a low-cost but effective end-to-end sEMG-based gait sub-phase recognition system, which contains a wireless multi-channel signal acquisition device simultaneously collecting sEMG of thigh muscles and plantar pressure signals, and a novel neural network-based sEMG signal classifier combining long-short term memory (LSTM) with multilayer perceptron (MLP). We evaluated the system with subjects walking under five conditions: flat terrain at 5 km/h, flat terrain at 3 km/h, 20 kg backpack at 5 km/h, 20 kg shoulder bag at 5 km/h and 15° slope at 5 km/h. Experimental results show that the proposed method achieved average classification accuracies of 94.10%, 87.25%, 90.71%, 94.02%, and 87.87%, respectively, which were significantly higher than existing recognition methods. Additionally, the proposed system had a good real-time performance with low average inference time in the range of 3.25 ~ 3.31 ms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2019.2950096