Microwave-Induced Thermoacoustic Imaging Model for Potential Breast Cancer Detection
In this study, we develop a complete microwave-induced thermoacoustic imaging (TAI) model for potential breast cancer imaging application. Acoustic pressures generated by different breast tissue targets are investigated by finite-difference time-domain simulations of the entire TAI process including...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 59; no. 10; pp. 2782 - 2791 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.10.2012
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, we develop a complete microwave-induced thermoacoustic imaging (TAI) model for potential breast cancer imaging application. Acoustic pressures generated by different breast tissue targets are investigated by finite-difference time-domain simulations of the entire TAI process including the feeding antenna, matching mechanism, fluidic environment, 3-D breast model, and acoustic transducer. Simulation results achieve quantitative relationships between the input microwave peak power and the resulting specific absorption rate as well as the output acoustic pressure. Microwave frequency dependence of the acoustic signals due to different breast tissues is established across a broadband frequency range (2.3-12 GHz), suggesting key advantages of spectroscopic TAI compare to TAI at a single frequency. Reconstructed thermoacoustic images are consistent with the modeling results. This model will contribute to design, optimization, and safety evaluation of microwave-induced TAI and spectroscopy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.2012.2210218 |