Bandwidth Aggregation-Aware Dynamic QoS Negotiation for Real-Time Video Streaming in Next-Generation Wireless Networks

In next generation wireless networks, Internet service providers (ISPs) are expected to offer services through several wireless technologies (e.g., WLAN, 3G, WiFi, and WiMAX). Thus, mobile computers equipped with multiple interfaces will be able to maintain simultaneous connections with different ne...

Full description

Saved in:
Bibliographic Details
Published inIEEE Transactions on Multimedia Vol. 11; no. 6; pp. 1082 - 1093
Main Authors Fernandez, J.C., Taleb, T., Guizani, M., Kato, N.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2009
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1520-9210
1941-0077
DOI10.1109/TMM.2009.2026086

Cover

More Information
Summary:In next generation wireless networks, Internet service providers (ISPs) are expected to offer services through several wireless technologies (e.g., WLAN, 3G, WiFi, and WiMAX). Thus, mobile computers equipped with multiple interfaces will be able to maintain simultaneous connections with different networks and increase their data communication rates by aggregating the bandwidth available at these networks. To guarantee quality-of-service (QoS) for these applications, this paper proposes a dynamic QoS negotiation scheme that allows users to dynamically negotiate the service levels required for their traffic and to reach them through one or more wireless interfaces. Such bandwidth aggregation (BAG) scheme implies transmission of data belonging to a single application via multiple paths with different characteristics, which may result in an out-of-order delivery of data packets to the receiver and introduce additional delays for packets reordering. The proposed QoS negotiation system aims to ensure the continuity of QoS perceived by mobile users while they are on the move between different access points, and also, a fair use of the network resources. The performance of the proposed dynamic QoS negotiation system is investigated and compared against other schemes. The obtained results demonstrate the outstanding performance of the proposed scheme as it enhances the scalability of the system and minimizes the reordering delay and the associated packet loss rate.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2009.2026086