Chern-Simons theory from M5-branes and calibrated M2-branes

A bstract We study a sector of the 5d maximally supersymmetric Yang-Mills theory on S 5 consisting of 1 / 8-BPS Wilson loop operators contained within a great S 3 inside S 5 . We conjecture that these observables are described by a 3d Chern Simons theory on S 3 , analytically continued to a pure ima...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2019; no. 8; pp. 1 - 70
Main Authors Mezei, Márk, Pufu, Silviu S., Wang, Yifan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A bstract We study a sector of the 5d maximally supersymmetric Yang-Mills theory on S 5 consisting of 1 / 8-BPS Wilson loop operators contained within a great S 3 inside S 5 . We conjecture that these observables are described by a 3d Chern Simons theory on S 3 , analytically continued to a pure imaginary Chern-Simons level. Therefore, the expectation values of these 5d Wilson loops compute knot invariants. We verify this conjecture in the weakly-coupled regime from explicit Feynman diagram computations. At strong coupling, these Wilson loop operators lift to 1 / 8-BPS surface operators in the 6d (2 , 0) theory on S 1 × S 5 . Using AdS/CFT, we show that these surface operators are dual to M2-branes subject to certain calibration conditions required in order to preserve supersymmetry. We compute the renormalized action of a large class of calibrated M2-branes and obtain a perfect match with the field theory prediction. Finally, we present a derivation of the 3d Chern-Simons theory from 5d super-Yang-Mills theory using supersymmetric localization, modulo a subtle issue that we discuss.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP08(2019)165