On infinite symmetry algebras in Yang-Mills theory

A bstract Similar to gravity, an infinite tower of symmetries generated by higher-spin charges has been identified in Yang-Mills theory by studying collinear limits or celestial operator products of gluons. This work aims to recover this loop symmetry in terms of charge aspects constructed on the gl...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2023; no. 12; pp. 9 - 45
Main Authors Freidel, Laurent, Pranzetti, Daniele, Raclariu, Ana-Maria
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A bstract Similar to gravity, an infinite tower of symmetries generated by higher-spin charges has been identified in Yang-Mills theory by studying collinear limits or celestial operator products of gluons. This work aims to recover this loop symmetry in terms of charge aspects constructed on the gluonic Fock space. We propose an explicit construction for these higher spin charge aspects as operators which are polynomial in the gluonic annihilation and creation operators. The core of the paper consists of a proof that the charges we propose form a closed loop algebra to quadratic order. This closure involves using the commutator of the cubic order expansion of the charges with the linear (soft) charge. Quite remarkably, this shows that this infinite-dimensional symmetry constrains the non-linear structure of Yang-Mills theory. We provide a similar all spin proof in gravity for the so-called global quadratic (hard) charges which form the loop wedge subalgebra of w 1+∞ .
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP12(2023)009