Dynamical and Static Multisynchronization of Coupled Multistable Neural Networks via Impulsive Control

This paper investigates the dynamical multisynchronization and static multisynchronization problem for delayed coupled multistable neural networks with fixed and switching topologies. To begin with, a class of activation functions as well as several sufficient conditions are introduced to ensure tha...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 12; pp. 6062 - 6072
Main Authors Lv, XiaoXiao, Li, Xiaodi, Cao, Jinde, Perc, Matjaz
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper investigates the dynamical multisynchronization and static multisynchronization problem for delayed coupled multistable neural networks with fixed and switching topologies. To begin with, a class of activation functions as well as several sufficient conditions are introduced to ensure that every subnetwork has multiple equilibrium states. By constructing an appropriate Lyapunov function and by employing impulsive control theory and the average impulsive interval method, several sufficient conditions for multisynchronization in terms of linear matrix inequalities (LMIs) are obtained. Moreover, a unified impulsive controller is designed by means of the established LMIs. Finally, a numerical example is presented to demonstrate the effectiveness of the presented impulsive control strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2018.2816924